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Abstract 

Instabilities driven by narrow-band impedances can be 
stabilized by Landau damping arising from the synchrotron 
frequency spread due to the nonlinearity of the rf wave- 
form. We calculate stability diagrams for various phase 
space distributions. We find that distributions without 
tails are unstable in the ‘negative mass’ regime (induc- 
tive impedance below transition or capacitive impedance 
above transition). We also find that longitudinal instabil- 
ity t,hresholds of the (usually neglected) higher order radial 
modes are lower than expected. For example, the next to 
lowest dipole mode has a lower threshold than the low- 
est sextupole mode even though the latter has the larger 
growth rate in the absence of Landau damping. 

I. INTRODUCTION 

It is difficult t,o calculate coupled-bunch instabilities for the 
case of arbitrary impedance funct,ions. Also, it is usually 
not very illuminating because little insight is gained and 
strategies for st,abilization are not easily deduced. In this 
paper, we find thresholds and growth rates arising from 
parasitic narrow-band resonances. We closely follow the 
formalism developed by Balbekov [I], but use a different 
longitudinal phase space distribution function. In partic- 
ular, we use a distribution which, as a function of syn- 
chrotron amplitude, is parabolic near the centre. Such a 
shape agrees with measured bunch profiles and is more- 
over expected from thermodynamic considerations. 

II. THRESHOLD 

Lehedev [2] showed that the Vlasov equation for longitudi- 
nal phase space can be cast into the form of an eigenvalue 
problem for the beam current perturbation harmonics. As- 
sume there is a parasitic resonat,or which is narrow-band in 
the sense that the quality factor is large compared with the 
ratio of resonator to beam frequency (=n/h where h is the 
harmonic number). In that case, the impedance can cou- 
ple to a coupled-bunch mode at only one frequency so the 
eigenvalue matrix reduces to 1 x 1. The dispersion equation 
for t,he harmonic R (w = nwo+R, where wg is the revolution 
frequency) is given by 
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where 
(1) 

Ln(f‘) = & Jr exp [im$ + ii+(E,$)] d?L (2) 
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and 

(Ap/p is the half-width of the momentum spread at base, 
I is the average current, V is the rf voltage.) wd(&), $ 
and E are the frequency, angle and action of synchrotron 
oscillations, &J is the maximum action in the bunch: for 
linear oscillations, the rf phase of a particle w.r.t. the 
synchronous phase is d=&cos 4. F(C) is the distribu- 
tion function of a bunch; it is normalized according to 

J(qw4(q)~~ = Eo/w,o. 
The threshold curve YJh(Q) can be found from (1) by 

letting the imaginary part of R approach zero. We consider 
only caSes of weak nonlinearity, where the function Imn(f) 
(2) can be replaced by the Bessel function Jm(f&) be- 

cause 4 M ficos$. This restricts us to cases where the 
tune spread is less than around 20%. 

It is clear from (1) that distribution functions F with 
large slopes are less stable. We consider bunches populated 
according to the density function 

F(E) = A’(1 - E/fo)“ (4) 

(K x p + 1 for small synchrotron frequency spread). For 
IL <l, F’ is infinite at the beam edge so the threshold 
impedance is zero. This is illustrated in Fig. 2 where we 
have plott,ed stability diagrams in the impedance plane for 
the elliptic distribution (parabolic line density) ,~=0.5, the 
parabolic distribution (parabolic in 4, linear in E) /~=l, 
and i~1.5. These are for a=95’ in the ~=0.5 case, and 
the other cases had & scaled to maintain the same peak 
line density (see Fig. 1). The two diagrams are for res- 
onators at n/h=2 and n/h=0.5 ‘. It can be seen that in- 
deed for ~=0.5, the stability boundary passes through the 
origin. It also does so for p=l and the reason is more sub- 
tle: since F’ remains finite at the beam edge, the integral 
in (1) diverges when Q is exactly mw,(&) because in that 
case only one side of the singularity is integrated over. 

The stability boundaries in Fig. 2 are for the dipole mode 
(m--l). The 0th er modes lead to additional loops in the 
impedance plane. An example is shown in Fig. 3 where up 
to m=4 is shown for the case of &=55’ with distribu- 
tion ~=1.5 for a parasitic resonance at n/h=5. Other such 
curves are summarized in Fig. 4 where reciprocal threshold 
shunt impedances are plotted as a function of frequency. 

1 No significance should be attached to the fact that in general we 
use round nrlmbers for n/h. In fact, if n/h is exactly an integer or half 
integer (always the case if h is 1 or 2), the present stability analysis 
is not correct because frequencies (of either sign) separated by the rf 
frequency contribute to the same coupled-bunch mode. Effectively, 
this means that the present analysis ignores Robinson stability. 
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Figure 1: Line density profiles for the three distxibutions p = 0.5, 1.0 
and 1.5 (see Eon.4). With the r-axis in degrees, we get the stability 
diagrams below. 
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Figure 2: Stability boundaries in the impedance plane for the dipole 
mode for the three line densities of Fig. 1. The left plot is for n/h=2 
and the right plot is for n/h=0.5. The impedance is in units of 
1’ cos@,/I. Scaled in this way, the diagram depends only upon the 
frcvpency (n/h) and the bun& length. 

III. GROWTH RATE 

An upper limit on growth rate (l/~,~) of azimuthal mode 
number m is found from the mth term in (1) by ignoring t,he 
synchrotron frequency spread and replacing Q by mw, + 

i/r. We get 

1 2mw, h&I co -=-- 
J 

F’(C)J;(n/hdF)dL (5) 
TrYi n/h EoVcos$, rJ 

For the distribution family (a), Satoh [3] has solved t,his 
integral as an infinite sum and he has shown moreover 
that the individual terms in the infinite sum correspond 
to the different radial modes belonging to the azimuthal 
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Figure 3: Stability diagram in the impedance plane for a parasitic 
near 5 times the rf frequency, &=55’. Notice that the dipole mode 
is peculiar in that it has an extra loop. This arises because there is 
more than one oscillation of the square of &(5&) for E < ~70, so 
there are two dipole modes; ordinary and extraordinary. Inside the 
extra loop, the extraordinary mode is stable and the ordinary dipole 
mode is unstable. Both of these dipole modes are linear combinations 
of the radial modes (k) discussed below. 
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Figure 4: Reciprocal of the threshold R,h (in units of I/(V COST,)) 

vs. n/h for &=SS“ with distribution c=l.S. Thresholds up to the 
dodecapole are shown. 
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(6) 
(X is an abbreviation for :a). 

Both the individual terms of (6) and their sums have 
been plotted in Fig. 5. Take particular note of the rigid 
(k=O) mode for each m. These correspond to the form fac- 
tors given by Sacherer [4] (Sacherer picture). The bot,tom 
plot of Fig. 5 is a summary plot of the sums l/rm. This 
can be thought of as the Laclare [5] picture. The Sacherer 
picture is relevant for calculating growth rates from resis- 
tive impedances when a short-range wake like space charge 
lifts the degeneracy of radial modes and dominates in de- 
termining the thresholds. The Laclare picture is relevant 
when the short,-range wake effects are small compared with 
those due to the narrow-band resonator. 

IV. DISCUSSION 

A resonator can be represented by a circle tangent to 
the imaginary axis in the impedance plane. If no other 
impedance is present, the circle is centred on the real axis 
and it is clear (Fig. 2) that distributions with p<l are un- 
stable for any finite Rsh. If there is also a negative imag- 
inary impedance (eg. due to inductive wall effect below 
transition or space charge above transition) then distri- 
butions with 1111 are unstable. In other words, tails are 
essential in this case. On the other hand, with capacitive 
impedance below transition, bunches can have line densi- 
ties which are close to parabolic. This is consistent with 
the measured bunch shapes of the CERN I’S Booster [4]. 

It is interesting to compare Figs. 4 and 5. Counter to 
intuition, it is not the mode with the fastest growth rate 
(in the absence of Landau damping) which has the lowest, 
threshold. In fact, thresholds at any frequency go monoton- 
ically with azimuthal mode number and the dipole mode 
always has the lowest threshold. For example, at n/h=5 
and V cos $,/(I&)=23 in Fig. 4 only the dipole mode is 
unst,able. It is clear that in this case it is predominantly 
the rE=l radial mode (see Fig. 5) that is being excited even 
though its growth rate is relatively small. 
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Figure 5: Growth rates (in units of wSRdh I/(V cos da)) vs. n/h for the 
modes indicated. The dashed curves and the CWY~S in the summary 
plot at the bottom are the sums over k for any given m: they apply 
to the case of narrow-band impedance only, i.e. no splitting due to 
space charge. 
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