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Simulating electron trajectories (tracking) in a realistic compact ring introduces special problems because the magnetic 
bending radius can be as little as twenty times the horizontal displacement. Common simplifying approximations in 
tracking codes may not be appropriate. Results are presented from a thin lens tracking code which correctly handles 
the small bending radius virtual forces and real magnetic forces to octupole level. Nonsymplectic behavior is con- 
trolled by highly segmenting the Oxford superconducting dipoles. A qualitative comparison with experimental results 
is made. 

Introduction 

A superconducting electron storage ring intended pri- 
marily for X-ray lithography has recently been built 
by Oxford Instruments for IDM. This machine is 
currently being commissioned at the East Fishkill, 
h’ew York IBM facility. The machine, called 
I IEI,IOS, includes two 180” superconducting dipole 
magnets with a typical magnetic field of 4.5 T at an 
electron energy of 700 MeV. This gives a synchrotron 
light critical wavelength of 8.4 A. The bending radius 
is 0.52 m and the total circumference is 9.6 m with 
about one third of this length within the dipole mag- 
nets. 

Tracking an electron in this machine requires dealing 
with special computational problems not encountered 
in larger rings with conventional magnets. In partic- 
ular, the usual procedure of switching to a coordinate 
system tied to the design energy closed orbit (a non- 
inertial reference frame) introduces viro.d forces which 
are comparable to the higher order magnetic forces 
coming from a Taylor series expansion of the local 
magnetic field. Several of these virtual forces are ex- 
amined in the case of FIELIOS in the next section after 
which some tracking results are presented. 

The Equations of Motion 

In this paper there is room enough only for a brief 
outline of the derivation of the equations of motion to 
third order in the transverse coordinates and 
vclocitics.’ 15gure 1 shows the curvilinear coordinate 
system tied to the closed orbit of a design energy 
electron. Assuming that the design orbit is totally in 
the median plane, time derivatives of the unit vectors 
are 
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Figure I. The Curvilinear Coordinnte System 

x’ = I& ;=o ;=-hs; (‘1 
where h(s) = l/p. The position relative to a fixed ar- 
bitrary point, velocity, and acceleration are given by 

R=xx+yy+R, (2) 

t=&+&+.E(l+ku)s (3) 

V=(i-hi2(1 +kQ);+j;y 
+ (i( 1 + /UC) + 2h.G + /LX+ (4) 

These relations should be substituted into the 1,orentz 
equations for the particle motion 

Time derivatives in the equations for the x and y di- 
rections can be rewritten in terms of s derivatives, de- 
noted by ‘, with the help of the equation of motion for 
the s direction: 

1 C. N Arch~c. I) .I. Orrell and J A. tlythovcn. “I’artlcle Tracking in Small Radius Electron Storage Rings,” to be 
put~lished 

0-7803-0135-X/91$01.00 @IEEE 1594 

© 1991 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1991



and 

y” - h’x + 2hx’ 
1+hx y’= 

> 
L3y + ~‘4 

(6) 

The magnetic fields can be written down in more familiar accelerator physics terms. The expansions are limited to 
third order for fl, and fI, but only second order for fl, since B, always enters in the equations of motion multiplied 
by a transverse velocity component. 

+IY=h+kx++m,x2-&y2++n,x3-%xy2 

-& Jl, = ky + m,xy + n,x2y - t qy3 

(8) 

(9) 

-$ fl, = h‘y + (k’ - hh’)xy (10) 

Upon introducing these expressions and expanding the square roots we obtain 

x” = - (k + h2)x - ( -!j- m, -t 2hk + h3)x2 + t mg2 + h’(xx’ + yy’) + 3 h(xf2 - yt2) 

+ (+ q + rqh + h2k)x3 + (% - hmJxy2 - 1 h 
(11) 

1 ‘x2x’ - ( + k + 2h2)xxf2 + kx’yy’ - -+ kxy” + k’xyy’ 

and 
y” = ky + (m, + 2hk)xy + h’xy’ - h’x‘y + hx’y’ 

+ (n, + 2hml + h2k)x2y - + nzy3 - k’xx’y - hh’xx’y - (k + 2h2)xx’y’ + + kxt2y + + kyyt2 . (12) 

The higher order terms on the right hand sides of 
Equations (11) and (12) partition into those which 
stem solely from the higher order magnetic fields 
present and virtual forces which result from the 
transformation to a noninertial reference frame, the 
curvilinear coordinate system. Clearly all forces on the 
real particles are magnetic forces but this artificial 
grouping into virtual forces and magnetic forces is in- 
structive for showing the importance of keeping certain 
terms in the truncations of the equations of motion in 
the curvilinear coordinate system. We focus on the 
rclativc strengths of the sextupoic order forces as thcsc 
largely determine the dynamic aperture. 

With these terms dependent on various powers of x, 
x’, y and y’, it is not obvious how they compare. One 
way to do this relies on the higher order force terms 
being generally small compared to the dipole and 
quadrupolc field terms as is certainly true for small 
excursions about the design orbit. IIence the pseudo- 
harmonic solution to the strong focussing terms alone 
describes the motion fairly well over a few revolutions 
in the lattice. It is therefore meaningful to use time 
averages of the pseudo-harmonic solution to make 
rc1atit.r comparisons of the higher order terms. ‘[‘his 

assumption is only used to gain an appreciation of the 
relative magnitudes of the forces in the problem. 

For simplicity the discussion is restricted to comparing 
force terms for a purely horizontal deviation of the 
particle from the closed orbit. The solution to the 
linear part of the equation of motion is given by 

x = J& cos pLx (13) 

where PI is the usual accelerator physics horizontal 
hctatron function, c, is the conserved horizontal 
cmittance and ,LL~ is the bctatron phase. I <et the 

brackets < > denote time averaging at a given lattice 
position. Then it can be shown 

< xl2 > = %(4 + px’2)/px2 <x2 > (14) 

ant i 

<xx’ > = ‘Apx’/px <x2 > (15) 

Returning now to Equation (I I), the purely horizontal 
scxtupole order force terms on the right hand side can 
now be compared. IGgure 2 shows the lattice param- 
eters /IX, /?, and the dispersion q for a possible opcr- 
ating tune point of the IIl’I,lOS lattice. lising the 
above time averages and the calculated dipole fields, 

1595 

PAC 1991



“0 2 4 6 10 
Azimuth [m] 

Figure 2. IIF,I,IOS Lattice Parameters: 

the various coefflcicnts of second order force terms are 
shown in l?gure 3. Several features are worth noting. 
The magnetic field contributes kick-counterkick pairs 
at each end of the dipole magnet and hence there is 
partial cancellation. By contrast, the three virtualforce 
terms, some of which extend throughout the body of 
the magnet, do not similarly pair up. 

Tracking Application to HELIOS 

The previous section demonstrates that significant 
higher order forces extend throughout the IIEI,IOS 
dipole. This, together with the relatively large length 
of the dipoles, implies that a thin lens kick code can 
only bc used provided the dipoles are highly seg- 
mented. The results reported here come from a thin 
lens kick code in which gradient dipoles are treated 
exactly by a matrix formalism and all higher order 
force are represented by kicks between the magnet 
segments. Because ~IELIOS is a compact ring with 
few actual components in the ring, the dipoles can be 
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Figure 3. Tinic Averaged Scxtupolc Order Force 
Comparison: Note s = 0 at the dipole 
ccnler and a = - !>o'. 

Figure 4. Stored Beam Tune Scan 

highly segmented without serious computational diffi- 
culty. 

In Figure 4 a scan over tune space for III?I,IOS is 
presented. Adjustable scxtupolcs in the dipoles and 
one straight are set to zero the chromaticities at each 
tune point. The initial excursion of the particle at the 
middle of the ring straight section is calculated at each 
tune point to be ten times the natural beam size 
(lOa,) with 10% coupling between horizontal and 
vertical motion. The particle is tracked for a maxi- 
mum of 200 revolutions and the maximum vertical 
and horizontal excursions are noted. Doubling the 
number of maximum revolutions has little effect on 
the topology of the figure. If the excursion exceeds 50 
mm in either of the two transverse directions, the par- 
ticle is considered lost. The middle graph is a quantity 
which is proportional to 200 minus the number of 
successful revolutions of the particle. In some sense 
this graph is a composite of the other two graphs. If 
the particle is lost then this quantity is zero. 

Of course, these studies do not take into account col- 
lective effects which may have significant effects on 
beam stability at any tune point. Nevertheless, pre- 
liminary commissioning experience on IIEI,IOS pro- 
vides some qualitative confirmation of these tracking 
results in that sizable currents have been injected and 
stored in many of the quiet regions of Figure 4. It 
should be emphasized that the comparison of tracking 
results and commissioning experience reported is pre- 
liminary and that considerably more experience is 
necessary in order to go beyond qualitative remarks. 

The authors wish to thank particularly Mark 13arton 
for his suggestions and constructive criticism and the 
people at I>arcsbury Laboratory and Oxford Instru- 
ments who designed III~I,IOS. 
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