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Abstract 

Two canonical transformations are implemented to 
find approximate invariant surfaces for a nonlinear, 
time-periodic Hamiltonian. The first transformation is 
found from the non-perturbative, iterative solution of the 
Ilamilton-Jacobi equation. The residual angle depen- 
dence remaining after performing the t,ransformation is 
mostly eliminated by a second, perturbative transforma- 
tion. This refinement can improve the accuracy, or the 
speed, of the invariant surface calculation. The motion of 
a single pdicle in one transverse dimension is studied in 
a storage ring example where strong sextupole magnets 
ML t,he source of the nonlinearity. The refined transfor- 
mation t.o act,ion-angle variables, and the corresponding 
invariant surface. can attain accuracy similar t,o that of 
a good non-perturbative transformat,ion in half the com- 
put,ation time. 

I. The First, Non-Perturbative 
Canonical Transformation 
‘IVe assume that we have solved the Hamilton-Jacobi 

equation iteratively to find an appr0ximat.e invariant, 
t,orus and the canonical transformation to an approxi- 
mate set of action-angle variables for the full, nonlinear 
IInmiltonian(l] In this paper, we discuss a refinement, 
of this solut.ion. 

\Ve start. with the t,ime-periodic Ilamiltonian that, 
dcscribcas thr t,ransverse motion of a single charged par- 
ticle in a storage ring with sextupoles, 

IO 1 -< 
H(Qot ro, s) = p(s) + ~S(S)(2~~rl) 3’2 cos3 @” ( (1) 

whcrc S(s) gives the strengt,h in me3 and distribut8ion of 
t,hcb srst8upoles around the ring. We have used the act,ion- 
angle variables of tht> linear part of the IIamilt,onian. The 
arclength around the st.oragr ring s E [0, C] serves as the 
‘t8irrle variable in thr problem. In principle. the met,hod 
for finding t,he non-perturbat.ive solution is applicable to 
an arbitrary nonlinearity, as long as it is t,ime-periodic. 
For single particle motion in sf,orage rings. thr= dominant 
nonlinearity oft.en comes from sext,upole magnet#s. 

The canonical transformation from t,he variables 
((r,, lo) to (@I, II) is generated by Pz(@o, II, s) = @oil + 
Gl(Q?o. IL, s). The tl lree different, sets of action-angle 
variables will be discriminated by subscripts. For t,ht, 
t,wo different generators G we use superscripts. The non- 
pcrturbativct, numerical solut,ion of the IIamilt,on-Jacobi 
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equation described in Reference [l] yields the Fourier co- 
efficients of G’ on a finit,e mode set. The Fourier series 
is 

G1(@,,,ll,s) = c &n,Il,s)eim’a . (2) 
rnl$Mo 

The summation is over a finite set of modes indicated by 
MO . 

The numerical solution for G’ serves as a perfectly 
good canonical transformation even if it does not yield 
the action-angle variables for the problem. It is a well- 
defined function of the variables (@o, II, s), and it is very 
accurately periodic in s. We can implement the canonical 
transformation, allowing for a possible residual angle de- 
pendence, finding the Hamiltonian in the new variables: 

~I(~l~~l, s) = p(s> L+A(L~)+W@~J~,~) (3) 

The VI is defined such that its average over the new angle 
is zero. If G’ were a perfect solution of the EIamilt,on- 
Jacobi equation then the residual angle dependence, \‘I. 
would be zero. 

The two terms are most easily calculated as int,e- 
grals over the original angle variable QQ using the trans- 
formation @I = (PO + G:(@o, II, s) and its Jacobian. We 
group all t,erms in the Hamiltonian transformation equa- 
tion that might have angular dependence into 

F(Qo.Il,s) = G,l(@o,Ls)+ g$+v(moJl.a) (4) 

Then A is the average of F over the new angles; this can 
be written in t,he original angles, by using the Jacobian, 
as A(ll,S) = s 2x d@o 

0 
Iz‘n~~7(~,~,~l,s~~(~o,Il,s) (5) 

where ,‘7(@,0, II, s) = 1 +GiQ(@O, II, s). In a similar fash- 
ion, the Fourier coefficient,s of VI with respect t,o t,he new 
angles @I are calculat,ed as 

Vl(V7, II, s) = J 2T d@, 

0 
~3!~O:L4 x 

e -im(~~tG:)P(~)o,lT1,S) (6) 

‘The @I d(~pendencc can be found using the Fourier series 
Vl((al, 11, s) = ~,nElbf, \,rl(r~~, 11, s) eimQ1, where 1!,f, is a 
mode set, bigger than the original .110. For the second 
perturbative transformation it is the Fourier coeffIicient,s 
t,hemselvcs t,hat are interest,ing. 

© 1991 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1991



TABLE 1. The results for refined solutions and their comparison with non-perturhative 
solutions. 

I I I 

I I action I2 with refinement cpu non-perturhative only cpu 

(10m5 m) MO NRK Ml 6 (sets) MO NRK 6 (sets) 

2.2 31 6-28 127 1.79.10-’ 244 63 14428 4.10.10-2 468 
2.0 31 6-20 127 2.09.10-3 177 63 lo--+20 3.67.10-3 314 
1.0 31 6-120 127 5.52.10-4 156 63 10-+20 5.41.10-4 436 
0.1 7 2-12 31 4.98.10-5 5.3 31 6412 5.05.10-5 40.5 

0.01 3 l--+4 31 9.4510-6 2.0 7 2 1.78.10-4 0.4 

II. The Second; Perturbative 
Canonical Transformation 
Using the new Hamiltonian (3) wit,h the residual an- 

gle dependence, we can write the Hamilton-Jacobi equa- 
tion that, gives the transformation to a new set of vari- 
ables (&, 12). If the G’ canonical transformation was 
au approximate solution to the original Hamilton-Jacobi 
equation then the residual perturbation will he much 
smaller than the original perturbation. It then makes 
sense to solve the new Hamilton-Jacobi equation with 
pcrt~urbat~ive techniques. 

The IIamilt,on-Jacobi equation for the generator 
G’(@l, I?, s) is 

~~(12, s) = G:+ 
I2 + G$$h, 12, s) 

O(s) + 

A(&+)+&A(hs)G;+ Vl(@l,hs) . (7) 

In Equation (7) we have expanded to first order in the 
prcsumcd small paramet,ers VI and G”. The above equa- 
tion can he solved hy using a Fourier series for G2 of 
l,llc sanle form as Equation (2) with Fourier coefflcient,s 
g”(m, Iz> s) and summing over m E M1. 

The Harnilt~onian (3) defines a hetatron phase ad- 
vancp t.hat is slightly different, from the linear phase ad 
vmce. 1Ve define the new phase as 

P(S) = ~‘-&+~‘&A(hW . (8) 

‘I’hcn the Fourier coefficients of G’(@l, 12, s) can he writ- 
kll as 

g”(mJ2,s) = -‘-imp(-~{eimP;c) _ 1 x 

J 
cEimp(o)v&n,I&h7 + 

0 

J J eimP(~)V~(ln,I2,(7)d~} , (9) 
0 

recalling t,hat. m E Ml a.nd that I, is a constant param- 
t+er. 

The original act,ion 10 can he specified as a func- 
tion of t,hc original angle Qpo by chaining through the t#wo 
canonical t,rarisfornlatioris. Aft,er espanding all functions 

of 11 = 12 + Gi(@l, I,, s) around the ‘best’ constant ac- 
tion Z2, we find the compact form 

~o(+o, 12, s) =I2 + G#‘o, I2, s)+ 

det (2) G~(@o + G:, I,, s) (10) 
1 

This is the refined invariant. torus. It gives the distortions 
to the linear CouranMnyder actions under the effects of 
the nonlinearity. 

III. Numerical Results 

The accuracy of the invariant t,orus can he estimated 
by finding its deviation from numerica.lly computed tra- 
jectories. The trajectories are computed by a fourth or- 
der symplectic integrator[2] . The deviations of the ac- 
tions as each trajectory crosses the s = 0 point (the point 
at which we are studying the torus) from the correspond- 
ing actions of the torus are found. The normalized devi- 
ation is calculated as 

6 = may c:“=9” lwiw)) - mwl 
. g”=9” IIo(@;(kc)) - 121 ’ (11) 

where superscript, T indicates points on the trajectory, 
and where the summation is over the turn number. The 
maximum is over 16 trajectories with different initial con- 
ditions starting on the torus. The S parameter measures 
the worst agreement between a trajectory and the torus. 
Notice it is normalized by the distort,ion of the torus and 
not hy the action value itself. 

In Table 1 we compare the refined soluliou to a good 
non-perturhativc solution. We give the mode sets and 
the number of integration steps, NRK, for the fourth or- 
der Runge-Kutta integration used. The final number of 
integration steps plus one is the number of knots used 
for the cubic spline interpolation of the s dependence of 
the Fourier coefficients g1 and g2 in a sextupole. The 
s dependence outside the nonlinear elements is trivial. 
The cubic spline is found using the ‘not-a-knot’ condi- 
tion, and it is used to evaluate t,he integrals in Equa- 
tion (9). The ‘CPU’ is the computation time t,o calcu- 
late the solution on the SLAC IBM 3090. The time un- 
der ‘with refinement’ gives the time for finding the poor 
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Figure 1 Invariant curves shown at s = 0 for the con- 
stant actions I? = 2. 10v5 m, 10m5 m, and 10v6 m. The 
refinement is not noticeable on this plot. 

non-perturbative canonical transformation, for estimat- 

ing drgl) and for completing the perturbative calcula- 
tion. The time under ‘non-perturbative only’ is that for 
calculating just t,he good non-perturbative solution. 

The numerical results are for the ideal single cell 
of the Berkeley Advanced Light Source (ALS)[3] . The 
largest amplitude in Table 1 corresponds to an approxi- 
mate z offset of 22 mm! and the smallest to 1.5 mm. The 
z tune is v = 1.18973. There are four 0.20 m long sex- 
tupoles symmetrically placed in the cell with strengths 
of -88.09, 115.615, 115.615, and -88.09 rnw3. 

In Figure 1, we display three representative invariant 
curves. The top curve corresponds to 12 = 2. 10e5 m and 
the bottom t,o I2 = low6 In. On this plot, the difference 
between the original and the refinement to an invariant, 
torus is not discernible. If there were no nonlinearity, the 
curves would be flat, lines at their respective values of 12. 

From the first non-perturbative transformation, we 
calculate the function .4 which defines the nonlinear 
phase advance, P(s) - q(s), where Q(s) = s; &/p(g) is 
the linear phase advance. Kotice that it, varies only in the 
nonlinear elements. In Figure 2, we show the nonlinear 
part of the phase advance in each of t,he four sextupoles. 
On the horizontal axis in t,he plot, 1 t.o 2 corresponds to 
the first sestupole, 2 to 3 the second, and so on. The 
offset from zero at, the end of the last sextupole is 2~ 
t.imcs the n0nlinea.r tune shift. 

In Figure’ 2, notice that the shape of the function 
p(s)-Q(s), is very similar for the three cases shown even 
though the magnitudes are different. This is t,ypical for 
this accelerator example. The t hrt:e casts ha.vc const,ant 
actions 13 = low6 m to 2 I lo-” m and correspond t,o t,lie 
in\-ariant, curves shown in Figurtl I. 
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Figure 2. Nonlinear phase advance in the sextupoles for 
I2 = 10T6 m, 10T5 m, and 2.10m5 m. The horizontal axis 
is 1 to 2 for the first sextupole, 2 to 3 for the second and 
so on. The small offset at the end of the last sextupole 
is 27r times the nonlinear tune shift. The linear phase 
advance is q(s) = si da/P(s). 

IV. Conclusions 
We found that the second canonical transformation 

used to refine a poor non-perturbative solution gave more 
accurate tori than the poor solution. However the refine- 
ment of very good non-perturbative solutions did not in- 
crease the accuracy of t,he solutions. From Table 1 we see 
that in most cases the refinement gives tori with similar 
accuracy in about half the computation time. From the 
implementation of the non-perturbative transformation, 
we were able to calculate the nonlinear phase advance in 
the sextupole magnets. The form that these functions 
take seems to depend on only a relatively small number 
of parameters as the constant action I2 is changed. 
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