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We study the problem of the growth of the ampli- 
tude of a particle executing betatron oscillations in a 
synchrotron or storage ring, due to the crossing of a 
resonance line. The resonance can be crossed either 
only once, or repeatedly. We treat only one degree 
of freedom in this paper, and assume the particles in 
the beam are independent. We consider some simple 
models of amplitude-dependent tunes, to discern the 
effects of detuning away from the resonance as the 
particle amplitude grows. The basic equation of mo- 
tion we shall treat is the harmonic oscillator equation 

2 + w,; x = f(t) (1) 

where the frequency w, = w,r(x, t) may depend on x 
and t, and also other parameters, and f is a driving 
term, which may also depend on t and other quan- 
tities. A more complete description of our analysis 
and results, including numerical results, is given in 
Ref. [l]. We only present the main points here. We 
shall assume that the driving term f has a sinusoidal 
time dependence, i.e. f 0; F cos(w,,t), or sometimes 
f a FeiWJL. First, let us suppose that We = w,(J, a 
constant, and 

2 f WZ” x = 

where rrCv is the revolution time around the ring. The 
solution for the driven part of the motion is easily 
found to be 

. F pJ1 

x = 

--2 27,,, w;,, - w; 
(3) 

and, on resonance, i.e. w,~() = wf, the solution is 

. F t eiWJ’ 
x = 

-a 27,,,, 2wj - (4) 

This grows without bound as t -+ co. Suppose, how- 
ever, there is an amplitude dependent tuneshift, given 
by 

w, = w,t1 + #a, (5) 

‘Work performed under the auspices of the U.S. Department 
of Energy. 

where p is a constant, and I,. = [(w.,oz)’ $ 52]/(2w,,j) 
is the action. The above model is an octupole 
tuneshift, since it is quadratic in the particle ampli- 
tude, i.e. linear in I,.. Suppose also that the motion 
is on resonance in the absence of the tuneshift, i.e. 
WJ = Wsll. Then the motion is resonant for small val- 
ues of IT, but as I,r increases, the motion is detuned, 
i.e. it goes off resonance. Putting x = ue’“Jl, we find 
that, from the above definition, 1,. = wz(Ju2/2. we 
also find that the motion does not grow to infinity, 
but reaches a peak value, given by [l] 

urnr1.r = (GS) I’:’ ’ 
2 

$3 213 
I rnul @I U,,,“,. 0: (-> P * 

(6) 

(7) 

We have verified the above result by tracking (11. 
We now treat the next case in our investigation. We 

now suppose that wJ is a constant, without any am- 
plitude dependence. Suppose also that the frequency 
of the driving term increases linearly with time, i.e. 
we = WI +cjt, where WI and & are constants. With- 
out loss of generality, we may suppose that wt = w, 
and that & is positive. In that case, the frequency 
of the driving term starts off below w,, then becomes 
resonant with w,,:, and then again becomes nonreso- 
nant. We again expect that the particle amplitude 
will grow, to a large but finite asymptotic value, but 
the expression for the peak amplitude will be differ- 
ent from the previous case. The problem can in fact 
be solved analytically. We write 

r#l(t) = /,‘wf(t’)dt’ = w1t + $ (8) 
and, using a Green function approach, we can show 
that 

1 ’ 
x = -1 sin[w,,:( t - t’)] F sin[q5( t’)] dt’ 

w.1, --3c 

cos(w,t t ;, , (9) 
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after some algebra. The peak amplitude is therefore 

iwy + ?.:‘I’ =. $; (?T) ‘I2 o; -& . w I,, 

Lysenko [a] 1 a so found, independently, that the pa- 
rameter which characterizes the amplitude growth is 
F/&‘/l’. We can offer a heuristic derivation of the 
agove result,. In the vicinity of t,he resonance, the 
amplitude of 1c grows linearly with time, 3: c( t, so 
the nmplit udc growth is approximately proport,ional 
to the time spent. near the resonance, say T. Now the 
particle will be close to the resonance when WI > w,., 
so that the phase of the particle oscillation, w,,t? and 
of the driving term, SW,, dt’, are in phase. How- 
ever, wf increases with time, so after a while w,, t 
and J WI dt’ will get out of phase. This will happen, 
roughly speaking, when the phase gap between them 
reaches 27r. Hence the time T is approximately given 
bv 

.i 

‘I. 
w,dt’ - w,.T $ 2x. (11) ,I 

Putting WI 1: wr -+ hf.‘, we obtain 

(JT” 

-~~ ? 277 
2 (12) 

or T cx ;-Ii>. As argued above, the particle ampli- 
tude growth is proportional to T, hence $ -‘I’. The 
factor of F is obvious because the equation of motion 
is linear, he~~cc E 0: F/G’!‘. 

We now turn to the third case to be studied in this 
paper, viz. multiple, or repetitive, crossing of a res- 
onance. This type of situation is more pertinent to 
t,hr “st,orage mode,” where the revolution frequency, 
bctatron frequency, and driving frequency are fixed 
for long periods of time. Because of synchrotron os- 
cillations and chromaticity, the betatron frequency of 
a part,icle may oscillate sinusoidally and cross a reso- 
nance line repeatedly. Let us therefore suppose that. 

w,,. = W,,,r I 4 A cos( w,,, t ) (13) 

where X is the amplitude of the tune modulation and 
w,,, is the modulation frequency. We refrain from 
writing w, instead of w,,, because the above modu- 
lation may be caused by other sources, e.g. power 
supply ripplcT not only synchrotron oscillations. Ne 
do, however, assume that. w,,, << wlil and w,,, << w’,, , , 
the (angular) revolution frqeuency. The solution for 
2, using a Green function approach, can be written 
as 

2 = ;F; s_‘, sin (l,‘u.V dl”) sin(tift’) dt’. (14) 

We use the Bessel function identity 

e I, ,ill !’ 2 e”‘V,,(r). -_ (15) 

We also average over the brtatron oscillations, and 
treat only 1 he cmtroid 2. The solution can t,hen be 
written as [I] 

5 z sin w,.,,(t - t’) 

1 u), [sin(Lu,,,t) sin(w,,,t’)!] g (16) 

A convergence factor c Pi’!’ - “I has been introduced 
into the above expression, to model the decoherence 
caused by an amplitude dependent. tune. After some 
algebra, the solution is 

e’“/l 

[------- --- --- --- Ff i(W,(, +- 72w,,, --- Wf) 

e -?;,I 

;I) r-l - qw.,, t nw,,, t Wf) 
* (17) 

In other vvords, there are resonances at the beta- 
tron frcquenrv w ), I pins “sidebands” w,,,,] + RW,,, , n = 
0, *1, f2). . 

There are now IWO cases t,o consider. If the side- 
bands are very close, i.e. &,a,,, <g: 1u.f w,,.(,l, then we 
find [I] 

F r.L,l 
-~ 
z ~ ~~~ H.c 

c 

c ~~~~ ~~- -.-- --~~~ i)iL~,,d-,, / j1 i(wr,, ~ wf) 
i.2, I e 

----.--} . (18) 
ij -- i(w.,i, i WI) 

This is exactly as if thrrc had been no tune modu- 
lation at. all, as can br verified by putting X = 0 in 
the integral for 5. Hence if t,he driving frequency lies 
outside the “cluster” of the betatron frequency and 
its sidebands, thrn the cluster can be treated as one 
single frrqiirnc~~. 

If thr sidehands arr widely separated, so that w,,, 
is rornparahle tr) iti,,, w f /, then we approximat.e by 
assuming Illat 01111. OII(’ sidrband (only one value of 
nj is important, in \rhirh C;LSC 

P’ 
a: x Jr, ( +r,, ) 

2w,,,7-, , ,. fi -- i(w ,.,I - nw,, - wJ) ’ 
(19) 

If the tune modulation is due to synchrotron oscilla- 
tions, then we must average over t,he amplitude and 
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phase of t.he synchrotron nscillst ions. The details are 
given in Ref. [l] and are not rrlevant~ here. 

Tn conclusion, we have presented three case studies 
of situations where the amplitude of a hetatron os- 
cillation can grow, due t,n crossing a resonance. Wc 
have presented expressions for the amplitude growth 
caused 1~9 t,he resonance, in the various cases. Further 
investigations, e.g. involving two degrees of freedom, 
nr other types of driving terms and other t,ypes of 
resonances, will be presented clsrwhere. 
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