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1 Introduction. 

Let us begin by admitting that the movement of physicists 
from FORTRAN to C++ has been less than a groundswell. 
At the same time, let me restate my opinion that scientific 
programming can be facilitated by an extensible language 
~ such as CSS , Objective-C, or AT>h - one in which we 
can define, easily and naturally, new variable types that 
behave, in all respects, like fully fnnc2ional variables of 
ihe language. C++ is tailored to suit programmers’ needs 
by creating “classes,” which specify (a) structures of data, 
(b) the functions and operators which act upon them, and 
(c) rules’ for creatiug and annihiIat,ing them. Among the 
advantages of working within such a language are: 

l user-friendliness Type checking, operator and func- 
tion overloading, and data hiding make it easy to build 
user-friendly C++ classes that behave as close to “ex- 
pected” as possible. For example, operator overloading 
means that arithmetic on algebraic classes can be imple- 
mented with the usual tokens: +, -, *, and /. Func- 
tion overloading means a statement, like “y = cos (xl” will 
work regardless of whether x and y are of type double, 
complex, matrix, quaternion, or anot,her type for which 
the statement makes seuse. In addition, if data conver- 
sions are appropriate, such as might arise in mixed mode 
arit,hmetic, the class constructors can handle this detail 
themselves, and other routine bookkeeping tasks can be 
imbeddcd within class implementations, freeing the appli- 
cation program(mer) from them. 

l inhcritancc and extensibility The class DA , which is 
discussed below, is an implementation of differential dge- 
bra in C++ . Having built it, one can easily go on to define 
other classes, such as DAmatrix - matrices whose elements 
are DA variables - with arithmetic operators overloaded in 
the obvious way. Should it be useful to do so, we could 
also have DAquaternion or DAcomplex variables, and one 
could go on to develop toolkits for rational, group, or 
any mathematical object that might be useful. 

*Operated by the Universities Research Association, Inc. under 
contract with the U.S. Department of Energy. 

‘The constructor and destructor functions which bring variables 
into and out of scope. 
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l language support The advantages of working within 
a supported language should not be undervalued. Once 
defined, classes have the full functionality of any other 
variable type within the language. Suppose that a class 
“zlorf ik” has been defined. This functionality means 
that an applications programmer can: (a) declare zlorf ik 
variables just as easily as double, int, char, or any other 
type of variable, (b) write functions which return a value 
of type zlorf ik, (c) declare zlorf ik aggregrates - multi- 
dimensional arrays, lists, trees, or whatever - and (d) ap- 
ply class operators not only on explicitly declared zlorf ik 
variables but also on expressions which evaluate to type 
zlorfik. One gets all this for free - not even the class 
designer has to sweat the details - by working within a 
language designed to be extensible. 

But enough missionary work. We shall describe below a 
few C++ classes and applications that have been written 
recently at Fermilab for problems in accelerator physics.’ 

2 MXYZPTLK 

In a paper for the previous IEEE PA-C I described a CSS 
class, nstd, which directly and very straightforwardly im- 
plemented automatic differentiation. Although it could 
(and did) do simple calculations, it was designed more for 
pedagogy than practical work. MXYZPTLK was designed 
to correct serious inadequacies of nstd. In it are defined 
two classes, DA and DAVector , which implement the “pro- 
longed numbers” of nstd as dynamically allocated (and 
deallocated) doubly linked lists - that is, they are derived 
from the container class dlist - with attributes defined 
at runtime. 

The DA and DAVector classes possess a unary operator, 
.D and a function .derivative, which correspond to per- 
forming and evaluating a derivative, as shown below. 

‘The new limit of three 8.5 x 11 pages has made it impossible 
to provide a bibliography, so there will be no citations of connected 
works. However, the two or three of you who are actually reading this 
already know who the major players are in the games these tools are 
meant for: Alex Dragt, Etienne Forest, Martin Ben, Filippo Neri, 
Johannes van Zeijts, Ron Ruth, Robert Warnock, Yiton Yan and so 
forth. 
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DA u, v; 
double x; 
int m[l = < 2, 1 1; 

. . . 
v = u.D( m 1; // Line A 
x = u.derivatiVe( m ) ; // Line B 

Line A corresponds to a functional equation, 
v = d3U/ax;dxl, while Line B merely loads the value of 
this derivative into the variable x. It is the operator .D 
that makes DA objects into a “differential algebra,” in the 
sense of Berz. 

In addition to the unary operator .D : DA -+ DA there is a 
binary operator ^ : DA x DA -+ DA which implements Pois- 
son brackets. For example, the program fragment below is 
used to evaluate the Poisson bracket of the two expressions, 

a = v;PlP;, b = sin(zlpixi 1 . 

DA XI, x2, pi, p2. a, b, pb; 
. . * 

a = xl * (x2*x2) * pl * (p2*p2*p2) 
b = sin( xl * (p2*p2) * (X2*X2*x2) 

Pb = a-b; 
tout << pb . standardpart (1; 

The last line prints the value of the bracket to the screen. 
Because instances of C++ classes are fully functional vari- 
ables, this could have been done in one step: 

tout << ( ( xl * (x2*x2) * pi * (p2*p2*p2) > 

( sin( xi * (p2*p2) * (x2*x2*x2) 1 ) 
).standardPart(); 

which applies .standardPart to the expression obtained 
by taking the bracket of the two expressions formerly 
loaded into a and b. In this same vein, the Jacobi identity 
can be tested among three expressions, a, b, and c with 
the line, 

( a-(b-c)) + (b-(c-a)) + (c'(a-b) .peekAt(); 

which prints all non-zero members of the expression to the 
scrcrn. Indeed, the arguments to the bracket operator (or 
any DA function) may also include functions luhich return 
a value of type DA . 

Each DA variable keeps track of its own attributes, such 
as accuracy and reference point. Because the order of 
derivatives kept in the list is necessarily truncated, the 
DA value resulting from an invocation of .D or the Poisson 
bracket operation is not as accurate as the arguments that 
went into it (its highest derivatives are missing). If this 
variable is used later in calculations, the results are also less 
accurate. Such information is carried along and upgraded 
automatically across computations. If the application pro- 
grarn tries to differentiate a variable too many times, to 
access derivatives which are not accurate, or to multiply 
two DA variables that have different reference points, an 
error message will be printed. 

Concatenation is implemented in MXYZPTLK via a bi- 
nary operator, *, applied to variables of type DAVector . 
Although it superficially acts like an array of DA variables, 
in fact a DAVector has extra structure. 

The first version of MXYZPTLK was released in Jan- 
uary, 1990. Source code can be obtained upon request, 
and a User’s Guide has been written. It is worth men- 
tioning that MXYZPTLK implements automatic differ- 
entiation by simple forward-mode algorithms and would 
probably not be suitable for large-scale problems requir- 
ing hundreds of coordinates. These may be handled better 
by reverse-mode methods incorporated into ADOL-C, for 
example. 

3 beamline 

The very name of the class beamline suggests what it is. 
beamline is derived from two parents: dlist , a container 
class which implements a beamline variable as a doubly 
linked list, and bmlnElmnt, a base class that contains in- 
formation common to all beamline elements, such as geom- 
etry, pointers to circuits, or conversion factors (e.g., am- 
peres to Tesla). That beamline is derived from bmlnElmnt 
makes it easy to insert one beamline variable into another. 

A C++ program fragment that builds a lattice consist- 
ing of five identical FODO cells may look as follows. 

double length, focallength; 
. . . 

drift 0 ( length ); 
thinQuad F ( focalLength ); 
thinQuad D ( - focalLength ); // Line 5 

beamline A ( BF ); 
A. append ( k0 ); 
A.append ( BD >; 
A.append ( PO ); // Line 10 

beamline B; 
for( int i = 0; i < 5; i++ ) B.append( &A >; 

Done in this way, any subsequent adjustment of the focal 
length of the F quad will take place simultaneously in all 
“five” cells of the lattice. An alternative to building the 
beamline variable element by element is to declare it with 
a string argument, which is interpreted as a lattice file. 
The statements, 

beamline Tevatron ( ' 'louBeta.synch' ' ) ; 
beamline mainInjector ( "mi-17.flat" ); 

declare two beamline variables, the first defined in a 
SYNCH file, the second in a FLAT format file. 

The beamline class interface contains the critical lines, 

virtual void propagate( double* ); 
virtual void propagate( DAVectorB ); 
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which establish that every specific beamline element must 
contain two .propagate member functions. The first, 
which accepts an array of (six) real variables m its ar- 
gument, does straightforward, element-by-element track- 
ing through the beamline; the second, which accepts a 
DAVector as its argument, constructs the polynomial map 
corresponding to concatenating the maps of its elements. 

The beamline class itself has .propagate member func- 
tions that do the same. One of the extraordinarily use- 
ful features of the virtual statement is that we can do 
this sort of thing so easily. The entire source code for 
the beamline: : propagate function consists of two decla- 
rations and one executable line. 

void beamline: :propagate( DAVectorBt x > < 
dlist-iterator g&Next ( *(dlist*) this 1; 
bmlnElmnt * p ; 
while ( p = (bmlnElmnt*) getNext > 

p -> propagate( x 1; 
3 

The beamline is being told to go element by element and 
propagate x through each one. There is no sequence of 
decisions to determine what to do based on type. Each 
type of variable knows itself what it is supposed to do. 

And how does it know? One feature of the bmlnElmnt 
class is that all the physics is isolated and contained in a 
collectzon of .physics files. For example, the .propagate 
implementation for a thin quadrupole element contains the 
line, 

{ #include “thinQuad.physics” 1 

which file is to contain all the physics associated with pas- 
sage through a thin quadrupole, the rest being boilerplate 
and logistics. This file may contain only the lines 

upr = upr -(u/f 1; 
vpr = vpr + ( v / f > ; 

where f is a part of the private data of a thinQuad 
beamline element, representing the focal length of the 
quadrupole. Now, someone may very well object to us- 
ing this, as it makes no mention of longitudinal momen- 
tum. He has the option of using an alternative file from 
the thinQuad.physics library, say, 

upr = upr - ( u / ( f*( 1.0 + vpr ) )); 
vpr = vpr + ( v / ( f*( 1.0 + wpr > >I; 

where wpr is to be interpreted as 6p/p. In addition, he can 
tinker with the files on his own. Suppose a user wants to 
do something unforeseen, such as call on a new symplectic 
numerical integrator to go very carefully through a thick 
element. He has the freedom to create his own .physics 
file, and the changes would be completely transparent to 
any application software using beamline The brackets 
surrounding the #include statement assure that variables 
declared or dynamically created by such tinkering can never 
interfere with variables of the same name in other parts of 

the class source code. The C++ scoping rules will prevent 
it - another feature one has for free when working within 
the language. Our hypothetical tinkerer need never look 
at boilerplate and logistics. 

A generic type of bmlnElmnt can exist in different fla- 
vors. For example quad is a derived bmlnElmnt , as are 
thinQuad , DAQuad, and DAthinQuad. The implication of 
thinQuad is obvious; the other two refer to a quadrupole 
whose properties - length and strength - are themselves DA 
variables, enabling them to be used as control coordinates 
in optimization calculations or to appear in polynomial 
expansions. 

The above was written as though the design were already 
implemented. Some is; more is not. The first working 
version of beamline should be ready near Fall, 1991, with 
documentation by All Saints Day. 

4 AESOP and canvas 

AESOP3, was introduced and demonstrated at the last 
IEEE PAC, so we shall not dwell on it here, as space is 
getting short. Suffice it to say that AESOP is a Phigs- 
based, prototype graphics shell, programmed in CSi- , for 
implementing “exploratory orbit analysis.” Its objective 
is easy, interactive exploration of four-dimensional phase 
space maps. AESOP’s “four-dimensional cursor,” imple- 
mented late last year, greatly facilitates the finding and 
tracking of four-dimensional separatrices through bifurca- 
tions. (See Resonance Seeding of Stability Boundaries in 
Two and Four Dimensions, this Proceedings.) A script 
(VAX/VMS DCL command file) is provided for linking 
AESOP with any four-dimensional mapping routine, which 
may be written in C++ , C, or FORTRAN. It has been 
used at Fermilab to explore the offset beam-beam interac- 
tion in the Tevatron, space charge in the booster, and in 
the Main Ring. 

AESOP was written originally for the Evans and Suther- 
land PS390, but I plan to port it to the Sun environment 
“soon.” The PS390 is a powerful, sophisticated graphics 
engine which is largely underutilized. The reason for this 
lack of enthusiasm is that no scientist of sound mind would 
read, much less assimilate, its seven-volume set of manu- 
als. To respond to this problem of making it easier to view 
two- three-, and four-dimensional data on the PS390, a 
C++ class, canvas, was built. By simply declaring canvas 
variables application programs are provided with objects 
that accept (scatterplot, wireframe, or vector-field) data 
and display them automatically. The “real-time” trans- 
formation capabilities of the PS390 are activated in one 
step by “.connecting” its external devices, the dials and 
the puck, to the desired canvas. A rastercanvas class 
is also available for scanning two-dimensional regions (ala 
Mandelbrot , for example). 

3Analysis and Exploration of Simulated Orbits in Phasespace, or 
some such thing. 
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