
C++ Objects for Beam Physics

LEO MICHELOTTI
Fermilab’, P.O.Box 500, Batavia, IL 60510

1 Introduction.

Let us begin by admitting that the movement of physicists
from FORTRAN to C++ has been less than a groundswell.
At the same time, let me restate my opinion that scientific
programming can be facilitated by an extensible language
~ such as CSS , Objective-C, or AT>h - one in which we
can define, easily and naturally, new variable types that
behave, in all respects, like fully fnnc2ional variables of
ihe language. C++ is tailored to suit programmers’ needs
by creating “classes,” which specify (a) structures of data,
(b) the functions and operators which act upon them, and
(c) rules’ for creatiug and annihiIat,ing them. Among the
advantages of working within such a language are:

l user-friendliness Type checking, operator and func-
tion overloading, and data hiding make it easy to build
user-friendly C++ classes that behave as close to “ex-
pected” as possible. For example, operator overloading
means that arithmetic on algebraic classes can be imple-
mented with the usual tokens: +, -, *, and /. Func-
tion overloading means a statement, like “y = cos (xl” will
work regardless of whether x and y are of type double,
complex, matrix, quaternion, or anot,her type for which
the statement makes seuse. In addition, if data conver-
sions are appropriate, such as might arise in mixed mode
arit,hmetic, the class constructors can handle this detail
themselves, and other routine bookkeeping tasks can be
imbeddcd within class implementations, freeing the appli-
cation program(mer) from them.

l inhcritancc and extensibility The class DA , which is
discussed below, is an implementation of differential dge-
bra in C++ . Having built it, one can easily go on to define
other classes, such as DAmatrix - matrices whose elements
are DA variables - with arithmetic operators overloaded in
the obvious way. Should it be useful to do so, we could
also have DAquaternion or DAcomplex variables, and one
could go on to develop toolkits for rational, group, or
any mathematical object that might be useful.

*Operated by the Universities Research Association, Inc. under
contract with the U.S. Department of Energy.

‘The constructor and destructor functions which bring variables
into and out of scope.

0-7803.0135.S/91$03.00 @IEEE 1561

l language support The advantages of working within
a supported language should not be undervalued. Once
defined, classes have the full functionality of any other
variable type within the language. Suppose that a class
“zlorf ik” has been defined. This functionality means
that an applications programmer can: (a) declare zlorf ik
variables just as easily as double, int, char, or any other
type of variable, (b) write functions which return a value
of type zlorf ik, (c) declare zlorf ik aggregrates - multi-
dimensional arrays, lists, trees, or whatever - and (d) ap-
ply class operators not only on explicitly declared zlorf ik
variables but also on expressions which evaluate to type
zlorfik. One gets all this for free - not even the class
designer has to sweat the details - by working within a
language designed to be extensible.

But enough missionary work. We shall describe below a
few C++ classes and applications that have been written
recently at Fermilab for problems in accelerator physics.’

2 MXYZPTLK

In a paper for the previous IEEE PA-C I described a CSS
class, nstd, which directly and very straightforwardly im-
plemented automatic differentiation. Although it could
(and did) do simple calculations, it was designed more for
pedagogy than practical work. MXYZPTLK was designed
to correct serious inadequacies of nstd. In it are defined
two classes, DA and DAVector , which implement the “pro-
longed numbers” of nstd as dynamically allocated (and
deallocated) doubly linked lists - that is, they are derived
from the container class dlist - with attributes defined
at runtime.

The DA and DAVector classes possess a unary operator,
.D and a function .derivative, which correspond to per-
forming and evaluating a derivative, as shown below.

‘The new limit of three 8.5 x 11 pages has made it impossible
to provide a bibliography, so there will be no citations of connected
works. However, the two or three of you who are actually reading this
already know who the major players are in the games these tools are
meant for: Alex Dragt, Etienne Forest, Martin Ben, Filippo Neri,
Johannes van Zeijts, Ron Ruth, Robert Warnock, Yiton Yan and so
forth.

© 1991 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1991

DA u, v;
double x;
int m[l = < 2, 1 1;

. . .
v = u.D(m 1; // Line A
x = u.derivatiVe(m) ; // Line B

Line A corresponds to a functional equation,
v = d3U/ax;dxl, while Line B merely loads the value of
this derivative into the variable x. It is the operator .D
that makes DA objects into a “differential algebra,” in the
sense of Berz.

In addition to the unary operator .D : DA -+ DA there is a
binary operator ^ : DA x DA -+ DA which implements Pois-
son brackets. For example, the program fragment below is
used to evaluate the Poisson bracket of the two expressions,

a = v;PlP;, b = sin(zlpixi 1 .

DA XI, x2, pi, p2. a, b, pb;
. . *

a = xl * (x2*x2) * pl * (p2*p2*p2)
b = sin(xl * (p2*p2) * (X2*X2*x2)

Pb = a-b;
tout << pb . standardpart (1;

The last line prints the value of the bracket to the screen.
Because instances of C++ classes are fully functional vari-
ables, this could have been done in one step:

tout << ((xl * (x2*x2) * pi * (p2*p2*p2) >

(sin(xi * (p2*p2) * (x2*x2*x2) 1)
).standardPart();

which applies .standardPart to the expression obtained
by taking the bracket of the two expressions formerly
loaded into a and b. In this same vein, the Jacobi identity
can be tested among three expressions, a, b, and c with
the line,

(a-(b-c)) + (b-(c-a)) + (c'(a-b) .peekAt();

which prints all non-zero members of the expression to the
scrcrn. Indeed, the arguments to the bracket operator (or
any DA function) may also include functions luhich return
a value of type DA .

Each DA variable keeps track of its own attributes, such
as accuracy and reference point. Because the order of
derivatives kept in the list is necessarily truncated, the
DA value resulting from an invocation of .D or the Poisson
bracket operation is not as accurate as the arguments that
went into it (its highest derivatives are missing). If this
variable is used later in calculations, the results are also less
accurate. Such information is carried along and upgraded
automatically across computations. If the application pro-
grarn tries to differentiate a variable too many times, to
access derivatives which are not accurate, or to multiply
two DA variables that have different reference points, an
error message will be printed.

Concatenation is implemented in MXYZPTLK via a bi-
nary operator, *, applied to variables of type DAVector .
Although it superficially acts like an array of DA variables,
in fact a DAVector has extra structure.

The first version of MXYZPTLK was released in Jan-
uary, 1990. Source code can be obtained upon request,
and a User’s Guide has been written. It is worth men-
tioning that MXYZPTLK implements automatic differ-
entiation by simple forward-mode algorithms and would
probably not be suitable for large-scale problems requir-
ing hundreds of coordinates. These may be handled better
by reverse-mode methods incorporated into ADOL-C, for
example.

3 beamline

The very name of the class beamline suggests what it is.
beamline is derived from two parents: dlist , a container
class which implements a beamline variable as a doubly
linked list, and bmlnElmnt, a base class that contains in-
formation common to all beamline elements, such as geom-
etry, pointers to circuits, or conversion factors (e.g., am-
peres to Tesla). That beamline is derived from bmlnElmnt
makes it easy to insert one beamline variable into another.

A C++ program fragment that builds a lattice consist-
ing of five identical FODO cells may look as follows.

double length, focallength;
. . .

drift 0 (length);
thinQuad F (focalLength);
thinQuad D (- focalLength); // Line 5

beamline A (BF);
A. append (k0);
A.append (BD >;
A.append (PO); // Line 10

beamline B;
for(int i = 0; i < 5; i++) B.append(&A >;

Done in this way, any subsequent adjustment of the focal
length of the F quad will take place simultaneously in all
“five” cells of the lattice. An alternative to building the
beamline variable element by element is to declare it with
a string argument, which is interpreted as a lattice file.
The statements,

beamline Tevatron (' 'louBeta.synch' ') ;
beamline mainInjector ("mi-17.flat");

declare two beamline variables, the first defined in a
SYNCH file, the second in a FLAT format file.

The beamline class interface contains the critical lines,

virtual void propagate(double*);
virtual void propagate(DAVectorB);

1562

PAC 1991

which establish that every specific beamline element must
contain two .propagate member functions. The first,
which accepts an array of (six) real variables m its ar-
gument, does straightforward, element-by-element track-
ing through the beamline; the second, which accepts a
DAVector as its argument, constructs the polynomial map
corresponding to concatenating the maps of its elements.

The beamline class itself has .propagate member func-
tions that do the same. One of the extraordinarily use-
ful features of the virtual statement is that we can do
this sort of thing so easily. The entire source code for
the beamline: : propagate function consists of two decla-
rations and one executable line.

void beamline: :propagate(DAVectorBt x > <
dlist-iterator g&Next (*(dlist*) this 1;
bmlnElmnt * p ;
while (p = (bmlnElmnt*) getNext >

p -> propagate(x 1;
3

The beamline is being told to go element by element and
propagate x through each one. There is no sequence of
decisions to determine what to do based on type. Each
type of variable knows itself what it is supposed to do.

And how does it know? One feature of the bmlnElmnt
class is that all the physics is isolated and contained in a
collectzon of .physics files. For example, the .propagate
implementation for a thin quadrupole element contains the
line,

{ #include “thinQuad.physics” 1

which file is to contain all the physics associated with pas-
sage through a thin quadrupole, the rest being boilerplate
and logistics. This file may contain only the lines

upr = upr -(u/f 1;
vpr = vpr + (v / f > ;

where f is a part of the private data of a thinQuad
beamline element, representing the focal length of the
quadrupole. Now, someone may very well object to us-
ing this, as it makes no mention of longitudinal momen-
tum. He has the option of using an alternative file from
the thinQuad.physics library, say,

upr = upr - (u / (f*(1.0 + vpr)));
vpr = vpr + (v / (f*(1.0 + wpr > >I;

where wpr is to be interpreted as 6p/p. In addition, he can
tinker with the files on his own. Suppose a user wants to
do something unforeseen, such as call on a new symplectic
numerical integrator to go very carefully through a thick
element. He has the freedom to create his own .physics
file, and the changes would be completely transparent to
any application software using beamline The brackets
surrounding the #include statement assure that variables
declared or dynamically created by such tinkering can never
interfere with variables of the same name in other parts of

the class source code. The C++ scoping rules will prevent
it - another feature one has for free when working within
the language. Our hypothetical tinkerer need never look
at boilerplate and logistics.

A generic type of bmlnElmnt can exist in different fla-
vors. For example quad is a derived bmlnElmnt , as are
thinQuad , DAQuad, and DAthinQuad. The implication of
thinQuad is obvious; the other two refer to a quadrupole
whose properties - length and strength - are themselves DA
variables, enabling them to be used as control coordinates
in optimization calculations or to appear in polynomial
expansions.

The above was written as though the design were already
implemented. Some is; more is not. The first working
version of beamline should be ready near Fall, 1991, with
documentation by All Saints Day.

4 AESOP and canvas

AESOP3, was introduced and demonstrated at the last
IEEE PAC, so we shall not dwell on it here, as space is
getting short. Suffice it to say that AESOP is a Phigs-
based, prototype graphics shell, programmed in CSi- , for
implementing “exploratory orbit analysis.” Its objective
is easy, interactive exploration of four-dimensional phase
space maps. AESOP’s “four-dimensional cursor,” imple-
mented late last year, greatly facilitates the finding and
tracking of four-dimensional separatrices through bifurca-
tions. (See Resonance Seeding of Stability Boundaries in
Two and Four Dimensions, this Proceedings.) A script
(VAX/VMS DCL command file) is provided for linking
AESOP with any four-dimensional mapping routine, which
may be written in C++ , C, or FORTRAN. It has been
used at Fermilab to explore the offset beam-beam interac-
tion in the Tevatron, space charge in the booster, and in
the Main Ring.

AESOP was written originally for the Evans and Suther-
land PS390, but I plan to port it to the Sun environment
“soon.” The PS390 is a powerful, sophisticated graphics
engine which is largely underutilized. The reason for this
lack of enthusiasm is that no scientist of sound mind would
read, much less assimilate, its seven-volume set of manu-
als. To respond to this problem of making it easier to view
two- three-, and four-dimensional data on the PS390, a
C++ class, canvas, was built. By simply declaring canvas
variables application programs are provided with objects
that accept (scatterplot, wireframe, or vector-field) data
and display them automatically. The “real-time” trans-
formation capabilities of the PS390 are activated in one
step by “.connecting” its external devices, the dials and
the puck, to the desired canvas. A rastercanvas class
is also available for scanning two-dimensional regions (ala
Mandelbrot , for example).

3Analysis and Exploration of Simulated Orbits in Phasespace, or
some such thing.

1563

PAC 1991

