
Intelligent Power Supply Controller

R.S. Rumrill, Alpha Scientific Electronics
1868 National Ave. Hayward, California 94545

D.J. Reinagel, JCIL Engineering
293 MacArthur Ave. San Lear&o, California 94577

ABSTRACT chassis. CMOS circuits were used wherever possible to
reduce power consumption, and therefore, the dissipated heat.

We have developed a new power supply controller which
would combine 20-bit precision, simple interfacing, and
versatile software control. It performs many tasks internal to
the power supply and also communicates with an external
host computer. Parameters can be entered and/or read over a
serial link using one of the 82 command words [l]. In
addition, an optional remote control panel can be located up to
thousands of feet away. This new controller will reduce the
software dcvclopment time normally spent by the user, while
increasing the reliability of the system. The cost is less than
buying the equivalent separate CAMAC system. Nonvolatile
memory remembers all configuration data; one generic
controller can thus be programmed to use anywhere from the
smallest power supply to the largest.

We are presently building 22 power supplies using these
controllers. They will be used at the Clinton P. Anderson
Meson Facility at Los Alamos (LAMPF) [2].

B. CPU

An NEC V30 microprocessor is used. This is similar to
an Intel 8086, however the V30 has a better arithmetic logic
unit. 128k bytes of EPROM memory is used, with
expansion capability to 512k bytes possible. 64k of battery
backed RAM is used, expandable to 256k. A Maxim
MAX695 watchdog circuit is used in the reset circuit. Three
PAL’s are used to provide the various logic decoding, etc.

A. General
HARDWARE C. Interlock Circuits

The controller generates the necessary drive signals for
both the transistor regulator and the preregulator. It has
inputs for up to 24 interlocks. It controls the main contactor
as well as an optional load reverse switch.

The interlock circuits work on 24 volts DC. Each circuit
connects to the LED half of an optical isolator. The output
half then connects into the microprocessor circuits. Each
interlock one can be individually configured for the following
parameters:

The controller is built into a standard 5.25 inch high
chassis. An aluminum divider runs vertically down the center
axis. The resulting two halves form separate analog and
digital sections. Each section has its own motherboard. The
motherboards are passive, containing only the 150 pin
connectors for the individual boards and several other smaller
connectors.

The interlock name is displayed on the front panel during
a fault condition and is available to read over the serial link.

For each major function a new board was developed.
These include boards for:

1. CPU Circuits
2. Interlocks Circuits
3. RS-422 Serial Ports
4. DAC’s and ADC’s
5. Amplifiers

The choice was given to allow certain interlocks to ramp
down before turning off, thereby, reducing stresses in both the
magnets and the input power system. Events such as a
transformer overheating may have required many minutes to
occur, so a slow ramp down to off is appropriate.

D. RS-422 Serial Circuits

6. Configuration PROM
7. RS-422 Control Panel

Each board is designed to be either a digital or an analog
board and to mount into its half of the chassis. The
DAC/ADC board is able to span the two halves, picking up
the digital half, opto-isolating it, converting it to analog
signals, then dropping it down to the analog half of the

0-7803.0135-g/91$03.00 @IEEE 1537

1. interlock name
2. Normal state (open or closed)
3. Fast off or ramp down to off
4. Monitor or ignore

Four serial channels we desired for the following:

1. Host Computer Link
2. Local Control Panel
3. Optional Remote Control Panel
4. Private Diagnostic port

© 1991 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1991

The control panels communicate at 57.6 kbaud. National
NS16550 UART’s are used, these contain internal FIFO’s, and
are able to minimize the CPU overhead required for
communication. The host computer link can operate at baud
rates between 300 and 38.4k. Via this port, one can control
virtually any internal function using simple 3 letter
commands. The diagnostic port was added for programing and
debugging and is not for public use. The two ports which
connect to outside equipment are opto-isolated from the
microprocessor circuits. A 5 volt DC-DC converter is used to
generate to required voltages on the other side of the isolation.

E. DACIADC Circuits

The output from the current transductor is measured by an
Analog Devices AD624 instrumentation amplifier. The
resulting signal applied to a Crystal Semiconductor CS5503
Analog-to Digital Converter. This ADC is a 20 bit delta-
sigma device with several features which make it ideally
suited for our application. Likewise, the level of the output
voltage, transistor voltage, and ground fault current are each
digitized by a 16 bit CS5501. The input stage of these
ADC’s have a 10 Hz lowpass filter with about 50dB of
rejection at 60 Hz. The serial output stage is perfect for
optical isolating and multiplexing. Because the input range
of the device is +2.5 volts, the 10 volt signals used in the
controller are divided 4:l right at the ADC using precision
Vishay resistor networks.

The Current Reference voltage is generated by an 18 bit
Sipex SP9380 Digital-to-Analog Converter. The resulting
t-10 volt signal is used by the Linear Technology LT1007
error amplifier. Several Burr-Brown DAC’s are used to
produce the voltage reference and the preregulator reference. A
12 bit DAC is used to provide a fine, or vernier adjustment
into the Sipex’s summing junction. This accomplishes two
things. It produces apparent resolution of greater than 20 bits
and allows for a fine correction feedback loop.

This “drift correction loop” was implemented because the
Crystal ADC actually has better specs than the best DAC we
could find. Because almost all DAC’s use a R-2R ladder
structure, the ultimate drift is always limited the specs of the
resistors used inside the DAC. The ADC, on the other hand,
uses no resistors to digitize the signal. We simply try to
keep the current measuring ADC reading constant by
adjusting the fine vernier DAC as needed. Only the fine DAC
is controlled by this loop, the 18 bit Sipex DAC is used
“open loop”. The current control DAC’s are therefore “inside
the loop” and their errors reduced to virtually nil. The
algorithm used was selected to be dead slow, the desire being
to take out drift without causing any loop instabilities, even
on the most inductive magnets imaginable.

SOFTWARE

In the design of this controller, it was desirable to use a
high-level communications protocol for host communication
as well as inter-task communication [3]. This allows for
supporting multiple command sources and differing physical
communication medium. It was also desirable to have each
sub-system in the power supply conuoller, respond to

commands in exactly the same way, independent of the source
of the command. To achieve these objectives, the software
program was written in an object oriented programming
language, C++ [41.

Objects are software entities within the processor. For
example, the set of all interlocks form a class; the set of all
analog-to-digital converters form another class. However, the
most significant class in this controller is not one that
corresponds to a physical entity, but one which is used for
communication between the objects and application programs.
This class, named cmdFrame, forms a generalized data packet
which was sufficient for all inter-process communication.
This class will be detailed below. Since a number of these
objects co-exist and are independent of each other, the system
behaves as though several programs were running
concurrently under the control of a multi-tasking operating
system. No such operating system was used.

The communication class, cmdFrame, has a group of
public parameters, listed below with their data type:

int command-number;
int done;
int application-scratch[

SIZE-APPLICATION-SCRATCH];
unsigned next-crc-should-be;
int enor-code;
int wait-flags;
int need-current-value;
int argcount;
float float-value;
float pot-scale-factor;
Char* response-units;
int response-flags;
Char* strings-out[SIZE-STRINGS-OUT];

The command-number indicates which process, or
application, is to receive and act on this object. Other entries
in this object will give specific information as to what is
being requested. The Boolean, done, is set by the receiving
process when it has completed the requested task. For a
number of commands, as with the reading of the interlock
conditions, communication between the command source and
the application must repeat until all requested information has
been sent. To allow for parameter passing between
applications and for intra-application data storage, a small
array, called application-scratch, is provided; its usage is very
application dependent. The next-crc-should-be is used for
error checking when a command source is sending a block of
data to the controller. When an application detects an error
condition, whether due to the passed parameters or due to the
state of the power supply, it signals the error through the
error-code parameter. When the cmdFrame object needs to
wait for some event before being passed along, the wait-flags
parameter is set appropriately. This saves valuable processor
resources by eliminating the need for busy-waiting. When
one application needs to read another application‘s current
setting, then the Boolean need-current-value is set. If the
application is sending a floating point response, then the
argcount parameter is set and the value is place in float-value.
If there is a unit name associated with this floating point

1538

PAC 1991

response, e.g., Amps/set, then the response-units is set to
point to the appropriate name. For those applications which
have their values adjusted at a control panel, through the use
of a digital pot, the pot-scale-factor parameter is set to
indicate the magnitude of the effect of the digital pot. When
the application is returning a response, the parameter
response-flags is used to indicate which parts of the data in
the cmdFrame is to be sent back to the control source and in
which order. If the application is returning a text message,
then the array, strings-out, is set to point to entries in the
word dictionary which form the message.

To manage the cmdFrame class, there are a number of
subroutines, known as member functions, which will
coordinate the loading and parsing of the object. These
member functions with their return types are:

cmdframe(const int);
int get-source-IDO;
int active controller();
int set~active~controller(int value);
char* getbuf-text-out&
chair gets-text-it@;
Char putt-text-out(char);
char* puts-text-out(char*);
Char getc-text-it@;
void ungetc-text-in(char);
int check-for-no-argso;
void Cl@;
void init();

When a cmdFrame object is created, then its constructor,
cmdframe(), is invoked. This initializes key private
parameters in the object, as well as clearing most of the other
parameters by calling another member function, init(). Init()
is invoked each time a communication transaction has
completed as indicated by the setting of the Boolean done.
Another member function, clear0 is called by any application
when a command is not yet done but all the data in the object
has been operated upon and the application wants a clear slate
to work on. Although it is ideal for all applications to
respond in exactly the same way to all command sources,
there are some idiosyncrasies associated with the different
command sources. For example, to enter the super-user
mode, a password is needed; from the serial communication
link, an ASCII string is entered, but from a control panel, a
combination must be entered using the digital pot. In order
for the SUN application to know which parameter to
examine, it must call the member function get-source-ID().
When adjusting power supply parameters, it is necessary to
have exclusive access to these parameters for a period of time.
To determine if the command requester has been granted this
exclusive access, the member function active-controller() is
called and compared to the source-ID. If they match, then the
application makes the requested change; otherwise, an
error-code is returned. The member function
set-active-controller() is called by the REQ application to
inform all the users of the class cmdFrame who is the active
controller at that instant.

Often times in object communication, there is need to
pass ASCII characters and strings using the cmdFrame as the

medium of transfer. To coordinate this, a set of member
functions are provided; for reading characters out of a
cmdFrame, the functions getc-text-in0 and ungetc-text-in0
are provided. For fetching the entire remaining stream of
characters, the function gets-text-in0 is provided. In some
cases, the application expects there to be no input at all, and
to verify this condition, the member function
check-for-no-args() is provided. For writing characters into
the cmdFrame, the function putt-text-out0 is provided; this
function ensures that character array lengths are not violated.
When it is necessary to write characters directly into this
array, the function getbuf-text-out0 is provided to pass a
pointer to the location where the next character should be
placed. However, care must then be taken by the application
that it does not exceed the character array length. When
writing a character string into the array, strings-out, the
function puts-text-out{) places that string in the next
available location. There are a number of private parameters
within the cmdFrame class to affect these member functions,
but these will not be detailed.

The use of this communication object has proven to
provide a clean interface for the entire controller program and
makes it simple to locate and solve programming problems.
The modularity of this approach also makes it possible to add
other communication mediums without requiring significant
changes to the other parts of the program, as well as adding
other application commands.

REFERENCES

[l] For a detailed listing of the command words contact the
authors.
121 S. Cohen and R. Stuewe, “Magnet Power Supply as a
Network Object,” in this conference proceedings.
[3] L. J. Chapman, “Object-Oriented Communications,” in
Proceedings of the 1989 IEEE Particle Accelerator
Conference, pp. 163 1-2.
[4] B. Stroustrup, The C++‘Programming Languw ,
Addison Wesley, 1986.

1539

PAC 1991

