
A Programmable Beam Intensity Display System for the Fermilab Accelerators

S. Johnson, D. Capista
Fermi National Accelerator Laboratory *
P.O. Box 500, Batavia, Illinois 60510

Abstract

A programmable system has been constructed to provide
an easy means to display beam intensities and efficiencies from
the various Fermiblab accelerators. The purpose of these
displays is to provide an alternative display method for this
information. The system consists of a central microprocessor,
a data acquisition subsystem, an interface to the Fermilab
control system, and a link driver LO drive multiple display
boxes. Each display box has eight displays, with a display
consisting of the name of the parameter being displayed, the
units for the parameter displayed, the time the data was taken,
and the actual data. The final system will have a display box
at each control console in the Main Control Room. The
system is also a backup way to view accelerator performance
when the accelerator control system is down for any reason.

Introduction

At Fermilab there are approximately eighty intensity
parameters from the accelerators and transport lines. The
programmable beam intensity display system gives the user a
hardware display to view the intensity parameters of interest,
usually to aid in making adjustments to machine parameters.
Each display box will be programmable through any control
console.

The system consists of a VME crate which contains the
following cards: CPU, Token ring interface, MADC, scalar ,
display link driver, and an accelerator clock monitor. The CPU
uses the link driver to communicate with the displays. The
token ring interface is for communication with the accelerator
control system. The CPU uses the other three cards for data
acquisition.

Available Signals

There arc scvcral types of signals available which this
data acquisition system uses. One type of signal is a voltage
which is proportional to the beam intensity. The Linac and
circular accelerators at Ferimilb use a voltage type signal to
provide real time beam intensity data. Some of the beam
transport lines also use a voltage signal to represent the
integrated intensity which passes through the line during a
machine cycle. Another type of signal is the TTL level pulse

*Operated by the University Research Association under
contract with the U.S. Department of Energy.

train or scalar. Pulse train signals are found in some of the
beam transport lines, parlicularly in the Switchyard
experimental areas. These signals represent the total integrated
intensity an area receives by the number of pulses the area
returns.

System Hardware

The system hardware consists of a VME crate and several
display boxes. The VME crate contains several cards which are
commercially available and several cards which have been built
in house. The display boxes and the VME crates’ scalar, link
driver, and accelerator clock monitor cards are in house design
and construction. The CPU, MADC, and token ring interface
cards in the VME crate are commercial cards.

The Fermilab Accelerator Clock contains information
about the status of the various accelerators such as: injection,
start of acceleration, end of acceleration, and extraction [11. The
accelerator clock card in this system monitors these eight bit
clock events so that the CPU will know when to sample the
various signals. The CPU tells the clock card which events to
monitor. When one of these events occur, the clock card stores
the event data in a register and interrupts the CPU (fig. 1).

Figure 1. Accelerator Clock Card

The CPU then processes the interrupt and reads the event data.
The clock card is capable of four priority levels of interrupts
with a storage register for each interrupt. These four levels of
interrupts are necessary since several clock events may occur
close to each other in time.

The CPU communicates with the display boxes through a
parallel link. Each transmission consists of sixteen bits of
address and sixteen bits of data. When the CPU communicates
with the link driver, the address and data information are moved
into latches. The link driver then clears communication with

0-7803.0135.8/91$01.00 @IEEE 1505

© 1991 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1991

the CPU to allow it to perform other tasks while the link
driver transmits the information on the link.

Figure 2. Link Driver Card

After the VME interface moves the address and data
information into the latches, it signals the system controller to
begin transmission. The system controller then moves the
address information onto the sixteen bit link and drives the
address valid line true. Next the system controller waits for the
display box to respond to the address by driving the received
line true. When the system controller views the received line
true, it drives the address valid line false and waits for the
received line to go false. The system controller then moves the
data to the link and drives the data valid line true. The display
box which responded to the address processes the data and
responds to the link driver by again driving the received line
true. To complete the transmission, the system controller
drives the data valid line false and issues a clear to the VME
interface to allow further transmissions. Each transmission
requires about lus.

Each display box on the parallel link needs to repeat the
link information to the next box, decode addresses, pass data to
its displays, and respond to the link driver (figure 3).

c I

Figure 3. Link Repeater/controller

Once the link driver places the address on the link and drives
address valid true, each display box will receive the address
through its link repeater/controller and move the information
into the address latch. The address compare unit then looks at
the most significant byte to see if the address is for this box
and if the compare is true, the address range line will be driven

true to notify the link repeater/controller. Upon receiving
address range true, the link repeater/controller will drive the
received line true to notify the link driver it has the address.
The link driver then puts the data on the link and drives the
data valid line true. Next the link repeater/controller receives
the data and with the address range line still true, transfers the
data to the data latch and routes the address and data
information to the displays. To complete the link
communication, the received line is driven true by the link
repeater/controller.

Each of the eight displays in a display box consists of
four numeric and sixteen alphanumeric displays (figure 4).

Figure 4. Display layout.

The four alphanumeric displays to the right of the numeric
displays represent the units of the data. The twelve
alphanumeric displays under the numeric displays represent the
the name of the parameter and the accelerator clock event the
display updates on.

Software Considerations

The software for the system consists of four major
components. These components consist of an operating
system, networking software, user interface, and the actual data
acquisition and display software. The system software services
are provided by the MTOS operating system. This package is
a commercial product supplied by Industrial Programming
Inc.. The other software components are layered on top of
MTOS.

MTOS is designed as a real time operating system for use
in embedded applications. MTOS provides multitasking
abilities, along with intertask communication facilities.
Examples of the services provided by MTOS are semaphores,
controlled shared variables, event flags, signals, message
buffers, and mailboxes. A prioritized scheduling algorithm is
used by MTOS to make sure that critical tasks are run on
time. Since the operating system design is for embedded
applications, MTOS itself does not support program
development. All development work is done on a separate
machine, and the finished code is downloaded to the system.

The second part of the software is the network interface.
This allows the system to communicate with the Fermilab
Accelerator NETwork or ACNET. The physical connection
to the network is through a Token Ring interface. The
network interface is provide for convenience in changing the
data acquisition setup. This part of the software was written in
house at Fermilab.

The user interface task allows the user to change the setup
of the system from an attached terminal. This same task is

PAC 1991

also called by the network software when it changes the data
acquisition setup. This task runs at a very low priority and
will only make changes when all other tasks are idle. This
task also provides debugging routines through the attached
terminal for both the hardware and software.

The last part of the software is the actual control and
display software that makes up the system. This part of the
software can be viewed as four different tasks. Each of these
tasks provide some function that can be preformed
indcpcndently of the other tasks. The data is then passed
between the different task via software mailboxes.

The data acquisition is controlled through a central data
structure. This structure is an array of linked lists, with each
list corresponding to one reset on the Accelerator Clock
system. A node on this list will contain the following
information: index of the disired parameter, raw data, scaled
data, and one entry for each box on the link. The lower eight
bits of each box entry correspond to the eight displays on each
box. This information is used to determined which displays
arc updated for this node. When adding or deleting nodes from
the linked list, the user interface task will first lock all other
tasks from the list to prevent corrupting their pointers to the
linked list. Figure 5 shows an example of a node on the
linked list,

Pointer to next node
I 1

For each box one bit per display is used to

I determine if the data on this node show be displayed

OxFF

Figure 5. Node on Clock Event Linked List

A very simple database is also maintained in the system.
There is one entry for each data parameter, and the database is
accessed using the parameter index stored in the node on the
linked list. The database provides information on what card
and channel to read to get the raw data, how to scale the raw
data, and in what units the scaled data is displayed.

The first task reads the clock event to be serviced off the
Accelerator Clock card. This task interfaces with the interrupt
handler in the system software to provide this information.
Once it has read the clock event it passes the information on to
the next task.

The second task takes the clock event provided by the first
task and traverses a linked list associated with that clock event.

Each node on this linked list is a channel on the scalar or
MADC card that should be read. The task reads each channel,
stores the raw data in the linked list, and the passes onto the
next task the clock event to be processed.

The third task again takes the clock event being passed to
it and traverses that link list, This time the task will take the
raw data that was collected by the last task, and scale that data
and put it into a displayable form.

The last task takes the clock event data and again traverses
the linked list. Encoded on each node is the box and display
number for where the information should be sent. Figure 6
shows a view of each task’s input and output.

Task 1

Get Clock Event

Task 3

Scale Data

Figure 6 Task Input and Output

Summary

The display system is currently up and running in the
Main Control Room at Fermilab. The interface between the
network and the data acquisition software still needs to be
improved. This should be completed in the next couple of
mouths. Additional display boxes are being built so that a
box will exist at each console.

Acknowledgements

We would like to thank Linda Klamp who came up with
the original ideas for the system, and who was involved with
the early programming efforts on the system. We would also
like to acknowledge the efforts of James Morgan who is doing
the actual display box construction, and Charles Robertson
who designed the scalar card.

References

[l] R. J. Ducar, “Tevatron Clock Event Assignments”,
Fermilab controls hardware release No. 17.35,
February 199 1.

1507

PAC 1991

