
MARCO - Models of Accelerators and Rings to Commission and Operate

L. Catani, G. Di Pirro, C. Milardi, A. Stecchi, L. Trasatti.
INFN, Laboratori Nazionali di Frascati

P. 0. Box 13,00044 Frascati (Rm) ITALY
M. J. Lee

Stanford Linear Accelerator Center
P.O. Box 4349, Stanford, CA 94309

Abstract

MARCO is a knowledge-based user interface for
commissioning and operating modem accelerators and storage
rings. Its purpose is to provide a model-referenced graphical
interface system between the users and the machine. It allows
access to modeling and simulation codes that are used in the
design of the machine. It can be used to predict the effects of
a change of parameters on the beam, or to compare the
predicted with the measured effects. The design and prototype
development of MARCO using HyperCard will be described in
this paper.

I. DESIGN CODES

Two types of programs are used in machine design:
(1) Lattice Modeling - to define the location and strength

of the beamline elements in order to obtain the desired lattice
function values (e.g., the transport matrix and the Twiss
parameter values). Examples of the Lattice calculation
programs are COMFORT[l], LEDA[21, etc.

(2) Error Simulation - to find the location or the strength
of the beam monitors and correctors to change the beam errors
(e.g., the beam trajectory and shape). Examples of the
Correction programs are RESOLVE[3], etc.

MARCO is an attempt to build a common graphical and
interactive user interface to these programs, hiding the
complexity of the many existing input-output data formats.
The integration of such a tool in the control environment of
an accelerator will greatly enhance the possibility of
understanding and predicting machine behaviour for the
operators, during both commissioning and normal operation.

Control Applications

MARCO will be an interface to both types of programs:
Lattice Modeling and Error Simulation. Using these
programs, it is possible to operate the machine more
intelligently. For instance, Lattice Modeling Programs can be
used to see the effects on the Twiss function values before
making a change in the!beamline elements; they also can be
used to compute the strength of the beamline elements
required for making a specific change on the Twiss functions.
Both applications are needed in a Procedure to “Setup the
Bcamline”. Also, Trajectory Error Simulation Programs can
bc used to predict the effects on beam trajectory before making
a change on a corrector; they also can be used to compute the
strength of the correctors required for making a specific change
in the trajectory. Both applications are needed in a procedure
to “Correct the Beam Error”.

o-7803-0135~8/!91$03.00 @IEEE
1448

Commissioning Applications

The goal in commissioning is to find and correct the
errors in the beamline. The Error Verification Procedure
involves two steps: (1) Identify the good regions by finding
the largest regions where the prediction from the Simulation
Codes agrees with the measurement; (2) Identify the errors by
searching for the most likely candidate in the bad region (a bad
region usually lies between two adjacent good regions).

For example, it will be possible to use MARCO to find
field errors due to misalignment or miscalibration of the
beamline elements by analyzing the measured trajectory of a
test beam. The measurement usually involves changing the
beam trajectory by kicking the beam with some trajectory
correctors and measuring the beam trajectory at the beam
position monitors (BPMs). In practice, (1) Focusing errors
are found by analyzing a multiple set of beam oscillation data
(An oscillation is defined as the difference between two sets of
beam trajectory data); (2) Bending errors are found by
analyzing a set of trajectory data (not their differences). Both
applications are needed in a procedure to “Verify the
Beamline.” This Procedure has been used successfully to find
focusing errors and bending errors in SLC and to find the
alignment errors in PEP and SPEAR at SLAC.

II. THE SYSTEM REQUIREMENTS

Recently, a user interface, GENI [4], has been developed
for modeling and simulation programs such as COMFORT
and RESOLVE. These modeling and simulation programs arc
normally used to control and commission any machine,

To use these programs, the user has only to read the
beamline dataset which contains the Element Definitions and
Beamline Definitions. The name, type, strength, etc. of every
element are described in the Element Definition data, and the
position along the beamline of the elements is contained in
the Beamline Definition data. After reading in the beamline
dataset, it is possible to use GENI to set up the beamline
configuration and to analyze measured beam trajectories.

We would like MARCO to expand the range of GENI. It
should offer a standard interface to all of the modeling and
simulation programs that are commonly used for lattice design
and error study. Since GENI was implemented on a
MicroVAX Workstation, its availability will be limited.
MARCO is required to operate on a Macintosh II in order to
be available to many more users. In particular, the use of
HyperCard [5] on a MAC can offer an simple way to maintain
and upgrade MARCO.

© 1991 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1991

The HyperCard Solution

We have designed an interface system for MARCO that
can meet these requirements. Figure 1 shows a block
diagram for the layout of the interface system for MARCO.

modeling
program _-_ _-- _-_ 3 _-_ _-_ _-_ --_ _-_

-I
MARCO’s
DataBase

Fig. 1. A Block Diagram showing the layout of an
Interfacing System to MARCO for Beamline Set-up. A dotted
line separates the modeling program from the translators (t)
and MARCO.

For Beamline Set-up, the Lattice Modeling code interfaces
to the input beamline description data and to the output data
package. Two copies of the input data are provided--an
original copy containing the element strength values of the
design solution, and a second copy containing the strength
values of a new solution. The user can run the modeling code
to find the strength of the elements (FITTING) that produce
the desired values of the TWISS functions at some specific
points (FIT POINT). The output data include a Table of the
Twiss Functions at every element and the strength of the
elements.

MARCO uses three translator codes: one for translating
the Input Data from the data format of the modeling code, the
second for translating the MARCO’s Output Data to the
format of the modeling code, and the last one to translate the
Output of the modeling code to the MARCO interface
standard. After the input-output data have been translated, the
user can make changes or select display interactively using
buttons, menus, graphs and windows.

computer. It is not necessary to implement them to work on
the MAC. It is possible using HyperCard to run MARCO on
the Mac and to run the modeling code on the VAX
simultaneously. Alternatively, for a code that has been
implemented to run on the MAC, both MARCO and the
modeling code can run on the MAC concurrently. The use of
HyperCard offers us a simple way to connect new programs to
MARCO with minimum effort.

III. FIRST IMPLEMENTATION

The first two programs to be connected to MARCO are
the lattice design codes LEDA and COMFORT. LEDA was
originally written to run on a VAX using Top Drawer as a
graphical interface. All of the I/O functions provided by Top
Drawer are replaced by Hypercard .

Using MARCO it is possible to run Leda in two modes:
- Importing the code to the Macintosh and recompiling it

(using MPW 3.1[6] and the Language System
FORTRAN[7]).

- Using an RS/232 interface to the VAX (the input and
output files are transferred between Macintosh and VAX). In
this mode, Leda runs directly on the VAX CPU. In the future
the use of the Apple Communication Toolbox will allow
faster and more flexible communications with external
computers.

These two modes of operation reflect different needs which
may arise for different programs: While running a program on
the machine for which it was originally intended is usually the

easiest way to proceed, it may sometimes be convenient to be
able to work in a standalone environment by running it on the
Macintosh.

As far as COMFORT is concerned, only the first method
has been implemented, due to the high level of complication
of the program.

To run LEDA or COMFORT three separate windows have
been developed using HyperCard 2.

A) General parameter setting window (see Fig. 2).
,

0 ZAPflag 0 FiTflag q TSKflag
HJXU 6. 12
fual 6.10
ETWU 0
ETRW 0

FR‘WI >

I owte ~.,10,50~ 1

Fig. 2. General parameter setting window for LEDA
At Frascati, most existing codes are working on a VAX

1449

PAC 1991

When this window is selected, a menu becomes available
to load an input data file and to translate it to window B.

B) Element index and histogram window (see Fig. 3). The
elements are selected by the upper scroll bar which permits
rapid scrolling through the entire machine. Once an element is
selected by clicking on the corresponding icon, it is possible
to change its parameter values, or to assign/delete a parameter
from the list of elements to be used in Fitting (for LEDA,
Fitting is the process of calculating the values of the variable
element parameters to obtain the desired Twiss Function
values at some specific points along the beamline). These
points are called the Fit Points. The output is displayed in
graphic form. Multiple plots can be shown in the same
window, including the output from a previous run of the
program.

Fig. 3. Element index and histogram window

On window B, the user can click the buttons to: reset the
machine to the original configuration; save the changes
entered or discard them; go back to the parameter window; run
the program on the Macintosh (only for LEDA); run the
program on the VAX. If the last option is selected, the user is
presented with window C.

C) VAX communication window, which allows through a
simple terminal emulator to log unto the VAX and to change
directories. Moreover, while the program is being run,
messages showing the status of the execution may be
displayed on the screen.

IV. SUMMARY

The experience with HyperCard 2 has proven extremely
positive. We have demonstrated that a user interface for a
model-based control system can be implemented in a highly
modular way that can ease debugging and improve
maintainability, as can be expected from the use of an object
oriented language (HyperTalk).

We have found that development time using HyperCard
can be reduced to l/5 or l/10 of the development time using
UIS graphics (VAXworkstation). In particular, the number of
lines of code has been reduced from 5000 (GENI) to less than
2000 (MARCO). We believe that the reduction in the number
of lines will also lead to a reduction in the effort to
maintain/upgrade MARCO.

The success obtained in building a common interface to
programs as different as LEDA and COMFORT encourages us
to continue to implement other modeling and simulation
programs into MARCO. Eventually, MARCO will be the
user interface for the model-based control system for the new
PHI-factory DA@NE under construction at the LNF.

V. ACKNOWLEDGEMENTS

We would like to thank the Accelerator Group of the LNF
for continuing discussions and encouragement. We are
particularly grateful to T. Vignola, C. Biscari, and Steve
Kleban (SLAC) for their help in the implementation of LEDA
with MARCO.

[II

[21

131

141

151

[61

[71

VI. REFERENCES

M. D. Woodley, M. J. Lee, J. Jager, A. S. King,
Control of Machine Functions, or Transport
Systems, SLAC-PUB-3086. March 1983.

G. Vignola. private communication.

M. Lee, private communication.

S. Kleban, M. Lee and Y. Zarnbre, “GENI: A
graphical Environment for Model-based control,”
N.I.M. A293 (1990)

HyperCard ~2.0~2, Apple Computer Inc, 0 1987-
90.

Macintosh Programmer Workshop ~3.1. Apple
Computer Inc, 0 198589.

Language System FORTRAN, Language System
Corporation. 0 1988.

1450

PAC 1991

