
A New Man-Machine-Interface at BESSY

R. Miiller

Berliner Elektronenspeicherring-Gesellschaft fi.ir Synchrotronstrahlung m.b.H.
(BESSY), Lentzeallee 100, 1000 Berlin 33, FRG

H.-D. Do&I. J. Donasch, H. Marxen’, H. Pause

Gesellschaft fiir Oberfllchenanalytik und Computertechnologie m.b.H.
(SPECS), VoltastraBe 5, 1000 Berlin 65, FRG

Abstract

A UIMS (user infer&ace management system) has been devel-
oped, that is completely based on non-proprietary software.
Central part of our UIMS are processes (mapper) that act as uni-
versal X-clients for each specified X-server. Mapper (graphic
server) and applications (graphic clients) exchange requests by
an event driven interface. The communication protocol is free
from any graphical information. The most powerful mapper
client is a form interpreter, that can be programmed to act as an
equipment access server. Mapper and form interpreter allow
to compose control panels and synoptic views of the machine
with statements in a simple and comprehensible UIDL (user
interface definition language).

Introduction

The Berliner Elektronenspeicherring-GeselIschaft fiir Syn-
chrotronstrahlung m.b.H. (BESSY) operates an 800 MeV stor-
age ring dedicated to the generation of synchrotron light in the
WV and soft X-ray region [l].

Currently a new control system based on a distributed com-
puting environment is developed and gradually installed at
BESSY [2]. It replaces the aged control system [3] of the
running light source BESSY and has to serve as the kernel for
the control system of the planned 3rd generation light source
BESSY II. Standards (IEEE 802.3,802.4) or industry conventions
(TCP/IP, X11.4, etc.) are used wherever possible. Large high
resolution, bitmap oriented colour graphic screens with mouse
and keyboard wilI become the standard operator console.

For a period of time old and new control system have to
be operated in parallel to supply a reliable and unperturbed
operation of the running light source. That imposes constraints
and structural elements to the new system. Different aspects
of the old system have their effect on a new user interface:

a The mental image (metaphor) must contain the existing
control structure.

l Appearance characteristic (the look) has to be as similar
to the familiar system as possible.

‘Now at Dr.Brunthaler, Industrielle Informationssysteme, Berlin

0 Interaction sequencing (the feel) must take into account
the experience and habits of trained and skilled operators.

l Well established driving and diagnostic programs will be
ported to the new system with minimal effort. In a first
stage they go into operation running in an ordinary ter-
minal window.

Therefore our development is more in a danger to produce
a replica of the existing system on a modem platform than to
have any innovative impact on developments in other labora-
tories.

Nevertheless the basic concept of our new man machine
interface system is of general interest:

l Associated with every X11 display station is a central
graphics server program we caII mupper, whose services
have to be claimed by any application program. That
program hides representational aspects completely from
the applications.

l User interactions can assign code fragments in an action
language to variables of a special application program we
call form interpreter. Any access to the equipment can
be specified and evaluated within this action language,

l Only non proprietary software has been used. We are
not bothered by licence policies and independent of any
company.

The Graphics Server

Characteristic- for any UlhLS (user interface management sys-
tem) is the separation of code that implements the user inter-
face to an application and the code of the application itself.
The specification of the user interface is supported at a high
level of abstraction.

The most common approach is to ‘paint’ the user interface
representation with an interactive editor. Semantics and spec-
ification of the interface to the application is usually added in
a special purpose language. Only at this stage modularity of
software, separation of code for the graphical tasks and the
code of the application itself is given. A user interface builder
program binds the elements to the final application program,

0-7803-0135-8/91$01.00 @IEEE
1311

© 1991 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1991

Every application encorporates its own representational part.
It has to be recompiled whenever a change becomes necessary.

In our system modularity with respect to representation and
application functionality is especially emphasized. The repre-
sentational aspects are encapsulated within a separate server
program we call mapper. From the application programs point
of view the running graphic server (mapper) is the frontend
process that knows’ how to present application variables on
the associated display and that reports user interactions in an
‘understandable’ way.

An application programmer, who wants to offer variables
to user interactions has to build up and maintain a connection
(based on a socket link) to the mapper of the desired interaction
display. The corresponding software interface is a complex
object we call application form interface (Fig. 1). Routines
and data structures necessary for the dialog have to by linked
to the application program and are provided by a library.

bx V Ye ,.:::.,
i2: A k0 ::::; pllutJon. uur
:::., r&b* Pmti

er

L

Figure 1: Details of the Graphic Server

Whenever an application that has no connection to a display
requests access, the associated mapper reads specified config-
urational instructions, that are stored in a static (for the time
of the applications life) database of files we call forms (Fig.
1). The forms specify assignments of graphical representa-
tions, user interactions and permissions to modify application
variables, The syntax of the forms has been defined by lex
and yacc source files.

A logical connection is build up between objects the map-

per creates from the form template (the form instances) both
within mapper and application (see Fig. 2 for a sample applica-
tion program). The application specific data structures of the
form instances and the eventdriven communication protocol
form the interface between application and user interactions
(mediated by the mapper process).

As long as the connection exists the mapper acts as a super-
visor, Any event from application and user is reported to the
mapper process. The mapper takes care of a consistent state of
representational and applicational objects and variables. In the
usual operation mode the mapper keeps the form templates
in memory even after a connection has been cleared. After
a phase of initialisation this type of ‘down load’ of the GUI
improves response times drastically.

Presently the representational objects get their views and in-
teraction feasibilities by means of the Interviews toolkit [4].
Slight modifications (pointer grabbing, polling) had to be in-
troduced to the standard distribution to adopt the version 2.6
package to our needs.

Our first application program was a slider, that can be config-
ured to control any analog device. Then no further individual
application program has been written.

Generally application variables are used to notify to the ap-
plication, that a specific action should be performed. On a next
level of abstraction the code of the required action is no more
part of the application, but it is assigned to the variable that
should initiate the action. Evaluation and execution of the code
is then done by an interpreter. The result of this abstraction is
a programmable application we call form interpreter.

The Form Interpreter

Initially the form interpreter application was intended to supply
a flexible tool, that allows to compose a variety of control pan-
els and synoptic views of the machine by means of the static
forms. Representation of the form is still provided by the map-
per, the description of the semantic aspects is interpreted by
the form interpreter. The available sets of application variables
reflect the usable functionality.

l Forms are handled (e.g. freeze, unmap, position).

l Subforms are interpreted and handled, trees of forms are
generated and managed.

l Actions specified in an action language are started, the
context of the actions is specified.

l Periodic actions are scheduled, time instances are re-
ported.

a Background processes are started and terminated.

l Forms are submitted to different displays.

l Gateways to networks on the field level are selected.

The elements of the interpreted action language are very
similar to those of ‘C’. Certain restrictions in the declaration

1312

PAC 1991

of variables have to be respected. Some statements like switch
or break are not allowed, the use of labels needs some care.
The syntax of the action language is very familiar to ‘C’ pro-
grammers, Built-in functions are some often used routines
from the C library and utilities to change the operational mode
or support the form handling of the form interpreter itself.

Communication with the equipment is enabled by the built-
in library of equipment access calls. At BESSY this library
is the standard interface between application programs and
equipment. With the equipment access calls equipment can
be checked and manipulated. Thus the composition of synop
tic views and control panels becomes feasible.

In a client-server model the form interpreter is the equipment
access server to abstract clients, namely the synoptic views and
control panels specified in the database of forms.

Figure 2: Copies of the Form Interpreter at Work

Another set of internal functions supports the interprocess
communication needed for the dynamic configuration of equip-
ment lists. These lists sets up the entries of a table managed
by a specific form. That form displays (on demand or peri-
odically) the settings of pieces of equipment, that have been
entered to the list. The user can store and retrieve his favourite
(once dynamically generated) equipment list as well as switch
quickly between different lists.

In principle the slider control application could be realized
simply by a form that programs the form interpreter to execute
the desired actions. It will depend on the programs complexity

and the programmers skills, whether it is advantageous to write
a new application in a high level language to become a separate
mapper client or in the interpreted action language within a
new form.

The Graphical User Interface

A graphic editor that could be used to compose or modify syn-
optic views or panels is not provided for by our GUI system.
The definition of our GUI is given in a textual form. Our own
UlDL is especially appropriate to associate user interactions
with actions that include equipment access. In our forms com-
plex GUI objects are described in a comprehensible way. The
tool, that is suited best to extend and maintain the GUI and
that reflects the power and flexibility of our system is a plain
text editor.

Based on two application programs, the form interpreter and
the slider control, a GUI has been composed with about 5300
lines of statements in our UIDL, that provides all synoptic
views and interaction tools to the operators, that are today
available with the raster scan monitors, tracker balls, angle
encoders and terminal screens of the old control system.

Summary

The concept of a graphics server and a form interpreter al-
lows to shape the man machine interface in a descriptive way.
Appropriate to the level of abstraction in our UlMS a specific
UIDL had to be introduced like in other systems. This is a dis-
advantage because the usual programmer is not familiar with
this language. But in contrast to commercial systems we are
in a position to modify and extend language and functionality
easily, since everything is present in source code.

The use of the object oriented toolkit InterViews for the
realisation of graphical instances made programmers life easy.
But to keep in step with current user interface developments it
will become necessary to base the representations of our GUI
on Xt and the OSF/Motif widget set. In principle this is no
problem, but it means much work to compose the required
graphical objects already offered by Interviews (e.g. tray,
nonlinear deformation) within the usual Motif environment of
Xlib calls, Xt elements and the OSF/Motif widget set.

References

[l] S. Bemstorff et. al., Physica Scripta, 36, 15 (1987)

[2] G. v. Egan-Krieger, R. Mtiller, Proceedings of the 2nd Eu-
ropean Particle Accelerator Conference, Nice, pp. 872-
874,875877 (1990)

[3] G. v. Egan-Krieger, W.-D. Klotz and R. Maier, IEEE
Transactions on Nuclear Science, NS-30.2273 (1983)

[4] M. A. Linton, J. M. Vlissides and P. R. Calder, Compos-
ing User Interfaces with Interviews, IEEE Computer, 8
(1989)

1313

PAC 1991

