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ABSTRACT 

The CEBAF accelerator control system employs a dis- 
tributed computer strategy. As part of this strategy, the 
RF control sub-system uses 342 RF Control Modules, one 
for each of four warm section beam forming cavities (i.e., 
choppers, buncher, capture) and 338 superconducting ac- 
celerating cavities. Each control module has its own mi- 
croprocessor, which provides local intelligence to automat- 
ically control over 100 parameters, while keeping the user 
interface simple. The microprocessor controls analog and 
digital I/O, including the phase and gradient section, high 
power amplifier (HPA), and interlocks. Presently, the em- 
bedded code is used to commission the 14 RF control mod- 
ules in the injector. This paper describes the operational 
experience of this complex real-time control system. 

REQUIREMENTS 

There are seven major requirements for the embedded 
software: (1) low power RF control, (2) high power RF 
control, (3) interlocks, (4) system calibration, (5) module 
hardware configuration, (6) manual and automatic control, 
and (7) diagnostics. These requirements are described as 
follows. 

(1) Low Power RF Control 

The low power RF control is handled by hardware in- 
ternal to the RF control module. The phase and gradient 
loops are handled by this hardware, because of the speed 
needed. The embedded software’s function is to set up the 
operating point of the hardware. This point can be deter- 
mined manually ( ex ernally t by the operator or high level 
control software) or automatically (internally), or a combi- 
nation of both. A manually controlled parameter would be 
the gradient set point. An automatically controlled param- 
eter would be the gradient clamp voltage, that varies with 
the gradient set point. Measured values are also monitored 
and sent to the higher level computer. The interface to this 
computer has been simplified. The transferred values are 
in convenient units, rather than base units or DAC/ADC 
bit patterns (e.g., the RF module DACs and ADCs can be 
changed without changing the computer interface). 
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Some of the low power control signals are: 

Phase a. phase set point 
b. measured phase 
c. phase locking phase offset 
d. detector error 
e. amplifier gains and frequency response 
f. modulator bias 
g. reference oscillator power 
h. open/closed loop switch 
i. detuning angle of the cavity 

Gradient a. gradient set point 
b. measured gradient 
c. clamp modulator drive 
d. detector error 
e. amplifier gains and frequency 
f. offset drive 
g. quench detector 
h. open/closed loop switch 

output a. RF attenuator 
b. output switch 

(2) High Power RF Control 

The high power RF is handled by both the HPA hard- 
ware and the RF module hardware. The filament and high 
voltage switches and some fault flags (bits) are handled by 
the HPA hardware and are set and measured by the up- 
per level computer. The RF module handles the following 
HPA signals: 

a. filament voltage set point 
b. filament measured voltage 
c. cathode current 
d. body current (klystron) 
e. mod anode voltage set point 
f. mod anode measured voltage 
g. forward and reflected power monitor 
h. HV series relay to disable HV 

(3) Interlocks 

Interlocks are needed to keep the hardware in a safe 
condition. Some interlocks are handled in the hardware. 
The rest are handled by software, and are split into two 
groups: fast and slow response. Fast means within 150 
psec, and slow is measured in seconds. Detecting an inter- 
lock fault ranges from simply checking a hardware bit to 
checking a function of one or more analog signals. After 
an interlock fault is found, there can be various actions to 
take: (1) turn off RF, (2) t urn off high voltage, (3) turn 
off filaments, or (4) a combination of these but wait at 
each stage to see if the fault goes away. In addition, some 
interlocks need the fast shutdown line pulled. 
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Some of the signals to check for interlock faults are: 

a. excessive reflected power 
b. excessive cathode current 
c. excessive body current 
d. arc detector trip 
e. watch dog to verify computer activity 

(4) Calibration Correction 

There are two types of calibrations that affect the RF 
control module: (1) hardware variations internal to the 
module and (2) external hardware variations. The calibra- 
tion coefficients are to be stored in the module’s memory. 
This allows the internal coefficients to move with the mod- 
ule (e.g., from warehouse to accelerator). When a module 
is moved to a new location in the accelerator, only the 
external coefficients need to be transferred to the mod- 
ule. Some coefficients are fixed, while others depend on 
temperature. The use of calibration correction implies the 
following: (1) a means to determine these coefficients, (2) 
a means to transfer these coefficients, and (3) a real-time 
method to use these coefficients efficiently. 

External coefficients can be handled by typical mea- 
surement techniques (e.g., measure the cable attenuation). 
For the internal coefficients, a test-stand is needed to ex- 
ercise the RF module. This requires that the embedded 
software assist in this operation, which implies the follow- 
ing changes from the normal accelerator mode of opera- 
tion. (1) Allow direct access to the DACs and ADCs (e.g., 
phase set X & Y rather than simply the angle), (2) the 
interface values are voltages rather than usual units (e.g., 
watts, amps, etc.), and (3) do not modify (i.e., correct) 
these voltages. 

These coefficients are transferred to the module via a 
download mechanism. This includes standard error check- 
ing. In addition, it would be helpful to have an upload fea- 
ture to see if the downloaded values were loaded properly. 
As part of the total picture, other features are needed: (1) 
transfer coefficients from the test-stand to some database 
such as INGRES as a backup, (2) create download files 
from INGRES, and (3) create any version of download file 
(e.g., present values or last month’s). 

To efficiently use these coefficients, the algorithms 
should do as much pre-computation as possible, so that 
the normal run time computations are as small as pos- 
sible. This is especially important when the coefficients 
depend on very slow changing signals such as tempera- 
tures. When the temperature changes enough to make a 
difference, then a mechanism is needed to execute the pre- 
computation procedure during run time while affecting the 
normal operations as little as possible. 

(5) Module Configuration 

It is desirable to have only one version of the embed- 
ded software for all applications. There are six applica- 
tions: 

a. chopper section 
b. buncher section 
c. capture section 

d. quarter cryo section 
e. full cry0 section 
f. test stand 

(6) Manual and Automatic Control 

As mentioned above, in normal operation most signals 
are under automatic control. This is desired so as to sim- 
plify the interface to the upper computer (i.e., distributed 
control strategy). However, during development or debug 
operation, a manual mode of operation is needed. This 
manual mode is not simply full manual mode for all sig- 
nals; that would cause most debugging to be too complex. 
So, various degrees of manual operation are needed (i.e., 

allow varying percentages of signals to be under manual 
control, while the rest are automatic). The switch between 
automatic and manual modes must be “smooth” so that 
no glitches are introduced into the hardware. 

(7) Diagnohc8 

There are two types of diagnostics: active all the time 
and active on command. The first type is basically a dis- 
play of all important software control words (bit flags). 
The second type can be activated through normal data 
flow channels or via a secondary path (such as a RS232 
port). As part of this second type, a specialized “peek & 
poke” could be used to access all major signals and control 
variables. 

IMPLEMENTATION 

The total RF control system consists of three supervi- 
sor computers (HP835s), one each for the injector, North 
Linac, and South Linac. These computers are used mainly 
for display purposes in the control room. However, they 
do contain some logic that is global to that one subsys- 
tem. Under these three computers are the locals, which 
reside in the service buildings. Next come the RF module 
microprocessors. 

Injector: 1 supervisor, 5 locals (only 2 for RF), 
22 microprocessors. 

North Linac: 1 supervisor, 10 locals, 160 microprocessors 
South Linac: 1 supervisor, 10 locals, 160 microprocessors 

Supervisor to supervisor communication and super- 
visor to local communication is via LANs. The local to 
microprocessor communication is via CAMAC. The local 
can also communicate with other CAMAC devices, rang- 
ing from simple DACs/ADCs/switches to more complex 
devices (e.g., cavity tuner motors). 

The local to microprocessor path consists of 32 in- 
put channels and 32 output channels for normal communi- 
cation and various other specialized CAMAC commands. 
Even with this number, the outputs from the RF module 
have to be multiplexed because more than 32 channels were 
needed. For critical signals, error detection is employed. 

The software structure is based on a state machine. 
There are seven basic states: null, test-stand, download, 
idle, filament, high-voltage, and RF-on. Depending on the 
state, the various signal algorithms perform specific actions 
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particular to that state. The signal algorithms are also al- 
lowed to request a change to a lower state (e.g., when an 
interlock fault condition is discovered). This allows more 
modular construction, since one signal can only affect a 
major change in another signal via a state change. For 
example, if the reflected RF power is too high, the state 
is changed from RF-on to HV; then the RF output switch 
is opened because the the RF-on state is no longer active. 
Minor changes are allowed by passing the output of one 
signal routine to the input of another routine. For ex- 
ample, the cable temperature sensor routine measures the 
temperature, and the other routines can use this as input 
to modify their calibration coefficients. 

There is very little overlap of responsibilities between 
the local computer and the RF microprocessor. If the mi- 
croprocessor has primary responsibility for a particular sig- 
nal, it handles all aspects: reading the signal from hard- 
ware or CAMAC, calibration correction, fault and inter- 
lock detection, outputting the signal to CAMAC or hard- 
ware, and outputting the fault flag. The local computer 
will display the signal and fault flag, usually without sec- 
ondary processing. In other words, the microprocessor will 
do as much as it can, from signal processing to fault de- 
tection. 

OPERATIONAL EXPERIENCE 

The RF module embedded software is written in the 
C language, except for the boot code which is in assem- 
bly language. The early development was done on one of 
the supervisor computers in a UNIX environment (HP835 
computer). An in-house CAMAC interface emulation set 
of routines was used to join the local computer TACL (ac- 
celerator computer control system) logic with the RF mod- 
ule logic, while running both logics on the one HP835 com- 
puter. This allowed us to test both logics with very little 
(or no) change to either in this emulation environment. 
Two screens were used, one for the normal TACL display 
and the other for the RF module debug print statements. 
At this stage we were able to catch most logic errors. 

The next stage was to port the embedded code to the 
target microprocessor (INTEL 80186). The INTEL devel- 
opment station was used to debug the hardware dependent 
features. There were not that many errors at this stage. 

The final development stage was to transfer the code 
to the EPROMs and run the module with no develop- 
ment station emulator. This procedure went well. The 
C language code ported well. The following problems were 
noted, but they were generally minor. 

a. 

b. 

HP and INTEL compilers have some minor differ- 
ences. The INTEL compiler tended to be more strict 
in its checks, probably because it is one of the newer 
ANSI standard versions. 

Some differences were also due to the different archi- 
tectures of the processors. The INTEL 80186 uses a 
segmented memory. 

For small changes to the code, we generally skip the 
UNIX emulation stage. But for new and complex features, 
we start development on the UNIX system. 

The complexity of the software interface to the hard- 
ware is reduced by special hardware features. Instead of 
the software triggering an ADC and waiting for the value, 
the hardware contains a sequencer to trigger and read all 
ADCs and put the values into mapped memory. The soft- 
ware simply reads that memory when it needs it. The CA- 
MAC input/output is also memory mapped. This ADC 
sequencer can also be set up to sample one particular sig- 
nal at a software selected sampling rate and number of 
samples, and the hardware maps these sampled values to 
an array in memory. The software only needs to operate 
on this array (e.g., digital signal processing). 

The time to process one logic cycle in the RF module 
is about 33 msec (30 Hz). This time is for an RF module 
that uses the math coprocessor. With no coprocessor, the 
time increases to about 500 msec. 

The time to process the major part of a fast shut down 
interrupt ranges from 50 to 70 psec. 

CONCLUSION 

The RF module software design followed object ori- 
ented design guidelines. However, the implementation 
used the standard C language. Code check out went quite 
well, and most new features have fitted well into the basic 
structure. 

Our in-house UNIX emulation of the interface between 
the TACL computer and the RF module microprocessor 
aided greatly with early design and implementation. We 
could use the same UNIX tools that we used to develop 
the TACL system. 

The INTEL development system (with microprocessor 
emulator) was a necessity when it came to finding and 
fixing hardware/software errors. 

The RF module software performs well in reducing the 
computation burden of the local computers and in modu- 
larizing the RF control system. 
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