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Abstract 

We present the results of a new beam-beam simulation 
program that allows for a self-consistent calculation of the 
electromagnetic fields of the beams by treat.ing f;eneral 
(non-Gaussian) beam-distribut.ions. We find that a new 
class of coherent, instabilities, appearing at certain operat- 
ing point,s, dominate the dynamics. 

I. INTRODUCTION 

One of the factors limiting the performance of efe- stor- 
age ring colliders is the beam-beam interaction. There 
has been much speculation on the role of coherent (or 
collective) beam-beam effects as a mechanism for limit- 
ing the tune-shift, but no consensus has been reached on 
this issue[l]. Centroid ( or dipole) motion, where t,he cen- 
t,roids of the two beams oscillat,e relative to each ot,her, is 
routinely observed in operating storage rings, but there is 
no evidence that it affects luminosity. Centroid motion is 
easily detected and could be removed with feedback. 

The pot,ential for performance limitations comes from ef- 
fects that distort the beam shape. Such effects have been 
analyzed with two different types of models. In the first, 
of Furman ei a!.[21 and of Hirata[3], nonlinear maps for 
the colliding beam system are developed in the moments. 
In earlier work Hirata uses a nonlinear bea.m-beam kick 
calculated from a Gaussian beam, which is not cons&ent, 
with the a.ssumpt,ion that the beams remain Gaussian. He 
finds flip-flop solutions, where both beams maintain un- 
equal sizes. Later attempts at including higher moments 
were in substantial agreement wit,h the Ga.ussian calcula- 
tion. Furman et al. maintain self-consistency at the cost 
of a simplified, linear model of the beam-beam force. They 
find that equal-size higher-period solutBions coexist, and a.re 
responsible for performance limit,at.ions. 

In t,he second type of model, of Chao and Rut.h[4] and of 
Dikansky and Pestrikov[5], the phase space distribui.ions of 
the two beams influence each other and modes develop in 
phase space. The stability of these modes is analyzed with 
the linearized Vlasov equation, assuming small perturba- 
tions from equilibrium. While these calculations indicate 
the potential importance of coherent beam-beam effects, 
there are open questions about, the approsimat,ions used 

in the calculations, Landa.u and radiation damping, and 
the relative importance compared t,o other effects. 

Strong-strong computer simulations are an important 
tool in the study of the cohereut beam-beam interaction. 
In the usual ‘ Gaussian simulations’ the positions and rms 
sizes of the beams are first calculated from the coordinates 
of the test-particles just before the collision. They are 
then used in an expression for the beam-beam force that 
assumes the particle dist’ribution to be Gaussian[G]. Unfor- 
tunately, this procedure does not allow for a self-consistent 
calculation of t,he fields; it rest,rict,s the fields direct,ly and 
the distribut#ions implicitly. 

The simulation program discussed in this paper calcu- 
lates the fields from the coordinat,es of t,he test-particles, 
and does not> impose any restrictions on the beam- 
distributions or t,he beam-profiles. \I’e find new coherent 
instabilit,ies t,hat, at certain operating points, dominate the 
dynamics. 

II. FIELD CALCIJLATION 

\Ve worked wit#h beams that, were nominally round, i.e. 
the p*‘s and nominal emit,tances were equal in t,he two 
transverse dimensions. The beams were not restricted to 
remain round[7], but the field calculation is most, eficient 
when the transverse sizes are comparable. 

The electromagnetic fields of a bunch are calculat8ed by 
Lorent,z t,ransforming to its rest, frame and then solving 
Poisson’s equation. Test particles are cast onto a circu- 
lar mesh wit#h radial step size AT and azimuthal bin size 
Ad. The array that result.s, K( p, d), must be smoothed, 
otherwise the simulation results are affected by statisti- 
cal fluctuations due to the finite number of test, particles. 
The average charge is treat,ed first,. It, is smoot,hed by 
least-squares fitt,ing using Forsyt.hc’s method[8], and the 
radial electric field it, produces is calculated using Gauss’ 
Law. The azimut,hal variation of ,\r(~.d) is treated by 
Fourier analysing ivv( f’, @) and checking each Fourier coeffi- 
cient. for consistency wit.11 zero. St,atistically significant co- 
efficients are fit.ted and smoothed with Forsythe’s method, 
and the Green’s function for Poisson’s equation in polar 
coordinates[9] is used to calculat,e the pot,ential and the 
electric field. 
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Figure 1: Onset, and offset (0 for t,he various coherent res- 
onances, as a function of Qb. At the nominal tune of the 
resonance it is assumed that the resonance ‘ tube’ vanishes. 
The lines are drawn by interpolat,ing from the calculated 
data point,s down to the zero-to point. 

This algorithm was checked for sensitivity to the details 
of the mesh - the sizes of Ar and Ad - and was found to 
be insensitive to t,hem. On the other hand, the number 
of test particles and the smoothing provided by the least 
squares fit,t.ing were important. \Vithout smoothing, st,a- 
tist,ical fluctuat,ions dominated for any reasonable number 
of test, particles. 1l:ith smoothing, results were found to 
be insensitive to t,he number of test, particles when that 
number exceeded 5.000: in this work we used 10: 000 test 
particles. 

III. SIMULATION R.ESULTS 

Our results show t.hat the coherent behaviour is sensitive 
to the radiat,ion damping. In this work we concentrated on 
loworder resonances, up to sixth order, and on damping 
decrements of S = 1 x 10e3 and 6 = 1 x 10m4, correspond- 
ing t,o betat,ron damping times of 2,000 and 20, 000 turns, 
respectively. Synchrot#ron motion was not inchtded, and 
the beams were forced to collide hea.d-on by a ‘feedback’ 
system that set the cent,roids of t,he beams t#o zero after 
each turri. The horizontal and vertical tunes were kept 
equal (= Qb, say), and Qb was restricted to the region 
0.5 < Qb < 1.0. Results are presented only for the Z- 
dimension; t,he y-dimension behaved analogously. 

A Tune-Shift Scum 

Figure 1 present,s the results of scans over the nominal 
tune-shift to9 performed at different t#unes, in order to de- 
termine the tune-shift region over which coherent motion 
broke out,. The data-points in the figure correspond the 
lowest and highest [o’s at which coherent mot,ion was seen, 
at that particular tune. 

For the fourth-order (z) resonance there seems to be no 
upper limit to the coherent motion, at least to the max- 
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Figure 2: Horizont,al beam-size variat#ion over 20 turns. 
Qb = 0.79, (0 = 0.08. 

imum to of 0.14 investigated. A study of t.he beam-size 
variation indicates that the behaviour is period-2 and ant,i- 
correlated between the two beams: i.e. when one beam is 
tightly focussed, the other is blown-up. This is consistent 
with the results of Furman et al.[2] which show a strong 
fourt,h-order resonance. This is not a new feature of these 
simulations; the same behaviour is seen even in Gaussian 
simulations. 

Two sixth-order resonances, bhe 2 and the 2, were iden- 
tified and traced out in tune. In contrast to t.he i reso- 
nance, they were found to have a finite width in (0. This is 
consistent with the predictions of the second class of mod- 
els discussed above[4! 51. The oscillations in the beam-sizes 
were found to be period-3 and anti-correlated (Fig. 2). 

Just below Qb = 0.667 both third ($) and sixth($) order 
resonances could play a role in the dynamics. On the ot,her 
hand below &a = 0.833 only the sixth order (g) resonance 
is possible. However. the similarity of the coherent dynam- 
ics in these two regions (Fig. 1) suggest,s that the third- 
order resonance does nol contribute below Qb = 0.667. 
More generally one may surmise that odd order coherent 
resonances do not occur at all. This agrees with t,he predic- 
tions of the second class of models[4, 51, and is significant 
from the pract,ical point of view. 

B Gaussian us General Simulatbns 

To show that the sixth-order resonances are a new fea- 
ture of these simulations, we performed a set of comparison 
runs with a Gaussian simulation. For the i resonance, atS a 
tune of Qb = 0.80, the region over which coherent motion 
was seen was scanned using a Gaussian simulation. 

The results are presented in Fig. 3 in terms of the beam- 
size and its variation as a function of <o for both, the 
general and the Gaussian simulations. For the former, 
with 10,000 test particles, the statistmica fluctuation in the 
beam-size is less than a micron. For the latter, with 1,000 
particles, it is just over a micron. Larger size-variations 
are indicative of coherent motion. 
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Figure 3: Horizontal beam-size as a function of [o at Qb = 
0.80, for t,hree different cases. 

From the figure one sees that for the sixth-order reso- 
nance coherent oscillat,ions are present o?lly in the more 
general simulat,ion; they are absent in the Gaussian simu- 
lation. 

IV. DISCUSSION 

The last observation above suggests that, it, is critical to 
use general field calculat,ions in t.he study of nonlinear co- 
herent resonances. The reason is t,hat this allows for a self- 
rcillsislent calculat,ion of the electromagnetic fields from the 
posit,ions of t,lie t.est particles. It, results in higher-order 
fixed-point coherent, motion. 

It should be noted that centroid mot.ion has been re- 
moved in these simulat,ions, allowing us t,o concentrat,e on 
quadrupolar coherent oscillations. This is also reasonable 
from the experimental point of view, because such motion 
could be removed using feedback systems. If it, is allowed 
to remain, we find that the beam-size variations persist, 
although they are reduced in magnitude. There is now a 
large degree of centroid motion bet,meen the beams. Thus 
both centroid and shape oscillations t,ake place, and the 
sit,uation is complex. 

As mentioned earlier, the coherent behaviour is sensi- 
t.ive tso the damping decrement 6. With lesser da.mping 
t,he width of the resonance becomes considerably larger, as 
cau be seen from Fig. 3. Further, this could pot,entially re- 
sult in higher-order resonances entering the picture; some 
preliminary results with 6 = 1 x 10m4 indicate that t,his 
is indeed the case. Thus, in machines with low radiat,ion 
damping t,hese coherent coherent’ resonances could play an 
important role. 

It should be emphasized that, t’he signature of these co- 
herent resonances is a swift, turn-to-turn, variat,ion in the 
beam-sizes. Since existing detectors are not sensitive to 
such rapid variations, these resonances could not, hitherto, 
have been detected. 

V. FUTURE WORK AND CONCLUSIONS 

Much work remains to be done, and is in progress. Reso- 
nance structure with lower damping is being investigated. 
The impact of removing feedback has t,o be studied. Sen- 
sitivity to initial conditions, consequences of asymmetric 
parameters between the two beams, and methods of han- 
dling flat beams; all these avenues can be explored. 

We conclude by observing that a self-consistent calcu- 
lation of the electromagnetic fields is essential in a study 
of the coherent beam-beam interaction. It leads to a new 
class of higher-period coherent instabilities that dominate 
the dynamics at certain operating points. 
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