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ABSTRACT 

In low to medium energy accelerators, betatron t,une 
jumps and vertical orbit harmonic correction methods have 
been used to overcome the intrinsic and imperfection reso- 
nances. At high energy accelerators, snakes are needed to 
preserve polarization. We analyze the elfects of snake res- 
onances! snake imperfections, and overlapping resonances 
on spin depolarization. We discuss also results of recent 
snake experiments at the IUCF Cooler Ring. The snake 
can overcome various kinds of spin depolarization reso- 
nances. These experiments pointed out further that partial 
snake can be used to cure the imperfection resonances in 
low to medium energy accelerators. 

1. Introductiou 
‘I’he ability to accelerate of polarized protons to high 

energies is important for polarized proton collision experi- 
ments. During t,he acceleration process, polarized protons 
encounter thousands of spin depolarization resonances. 
These resonances arise mainly from the the horizontal 
fields in focusing quadrupoles. The horizontal Aelds rotate 
the spin away from the vertical axis. If the kicks are corre- 
lated each turn, then the resonance condition arises. There 
are two types of spin depolarization resonances*: intrinsic 
resonance at K = kP & vY and imperfection resonance at 
K = Ic, where k is an integer and P is the superperiodicity 
of the accelerator. K is the resonance tune obtained from 
Fourier analyzing quadrupole kicks around the accelera- 
tor. The resonance width or strength, E, is defined as the 
corresponding Fourier amplitude. 

In circular accelerators, the spin vector precesses around 
the vert,ical axis with a frequency of Gy per turn2, where 
G=(g-2),‘2=1.792846 is the anomalous g-factor of the pro- 
ton. The spin tune, v,, of the polarized proton is therefore 
V, = Gy. When the spin tune equals the resonance tune, 
successive kicks add up coherently to give rise to depolar- 
ization. Fig. 1 shows resonance strength as a function of 
the energy for various accelerators. Observe that the in- 
trinsic resonance strength is of the order of IEJ 5 0.5 fur 
RlIlC and 1~1 < Fi for the SSC. 

We shall review the effect of snake resonances, and the 
effect of overlapping resonances and snake imperfect,ious. 
The paper is organized as follows: Section 2 discusses the 
spin equation of motion. Section 3 deals with the spin 
motion in the presence of snakes. Section 4 reviews snake 
design. A conclusion is given in Section 5. 

2. Spiu Equatiou of Motion 
The spin equation of motion for a moving particle in a 

static magnetic field is given by3 

dg 
-= 
dt 

$2 x [(l + Gr)& + (I+ G)@ (2.1) 

where 21 and g1, are the transverse and longitudinal 
components of the magnetic fields respectively. G is the 
anomalous gyromagnetic g-factor and ymc’ is the energy 
of the moving particle. Let. us use the coordinate system 
of the reference orbit, where L, i, i are uuit vectors cor- 
responding to radial outward, longitudinal, and transverse 
vertical respectively. Eq.(2.1) can then be transformed to,’ 

d.?/dd = s’ x l?, (2.2) 

with d0 = ds/p, where s is the longitudinal path length 

and p is the radius of curvature. The vector ? = Fl;i + 
Fzii + .F3i, can be expressed in term of particle coordinate 
as, Fl = -pz”(l + GT), F2 = (1 + Gy)z’ - ~(1 + G)( $)‘, 

F3 = -(I + Gy). D f e min a P-component spinor, 9, with g 
St G-< ‘J!loil?lr >, Eq.(2.2) becomes, 

dQ/dt? = -+(Gy u3 - FluI -- Fgz)‘4! = - ;HY . (2.3) 
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F&J Compilation of intrinsic and imperfection resonance 
strengths for accelerators in the world. Note the scaling 
IRW of Eint N fi and ci,np - 7. The rms quadrupole mis- 
alignment assumed is 40.1 mm. The normalized emittance 
is 107rpm-rad. 

The off-diagonal ma.trix element, of R, ((0) E Fl -- iFz, 
characterizes the spin depolarization kick by coupling the 
up and down components of the spinor wave function. 
Given the repetitive nature of circular accelerators, ((0) 
can be Fourier analyzed as E(0) = C,jeiKje, where the 
Fourier amplitude, Ej, is resonance strength and the reso- 
nance tune, Kj, is given by Kj = /Z . P & mvY for intrin- 
sic resonances and Kj = k for imperfection resonances. 
Intrinsic resonances arise from the vertical betatron mo- 
tion of particle, and imperfection resonances arise from 
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the vertical closed orbit distortion. In a real accelerator, 
synchrotron and transverse betatron motions may also be 
coupled. The resonance condition becomes more generally 
lij = k. P & nev, rf; nv, * Iv,~~, where 12, I, m, and n are 
integers and vByn is the synchrotron tune. 

For a single resonance, i.e. E(0) = c eiKe, the spinor 
wave funct.ion for constant Gy can be found easily3, i.e. 
q(Q,) = t(Q,, &)!P(&) with 

t(Q,, Oi) = C fKe,uaef[aa,+r~o*-Ero~J(e,-ei)e~~e;o,~ 

Here t(0f, 0,) is the spin transfer matrix, whose compo- 
nents are given by, tll(61,Qi) = ,ei[c-K(e~-ei)/zl, and 
tlZ(B,,8i) = ;be-i[dfK(8~+8;)/21, with tal = -tiz, 122 = 

t;, and b = l$sin[X(Bj - 8i)/2] = (1 - CZ’)*/~, c = 

arctan[$ tan(x(e, - &)/2)], d = arg(e*), X = (a2 + )c/2)1j2, 
and 15 = K - Gy. The off-diagonal matrix elements 112, t~1 
are the depolarization driving terms, where the parame- 
ter 6 oscillates with an amplitude lel/x. When snakes are 
inserted into accelerator, the sine factor in the parameter 
6 remains small until the next snake, which rotates the 
spin by 180” around a horizontal axis. The depolarization 
driving terms can thus be arranged to cancel each other. 

3. Spill Motion in accelerator with Snakes 
A snake is a local spin rotator4, which rot.ates the parti- 

cle spin by K radians about a horizontal axis without per- 
turbing t,he particle orbits outside snake region. A partial 
snake diRkrs only in the amount of spin rotation angle, e.g. 
a 1.0% snake rotates spin by 0.1~ radians. Thus a snake 
is characterized by the amount of spin rotation angle, 4, 
and the snake axis angle, $,, with respect to C? (radial 
outward direction). 

The spinor wave function at a snake will be transformed 
locally according to 

!P(e+) = eifa~“lk(f3-) = S($,)Cl!(U-), 
where 6, = (cosCp,, sin+,, 0) denotes the snake axis with 
respect to horizontal outward direction i, and 4 = r is 
spin rotation angle. 8* depicts azimuthal orbit rotation 
angles .just before and after snake. 

Let us assume that there are N, snakes with snake axes, 
($1, $2,. . ,+N) distributed in the accelerator. Let &,{+I 
be the azimuthal orbit rotation angle between the i-th, and 
(i I- I)-t,h snakes. The distribution of snakes should satisfy 
the following conditions 

N. N. 
x Qk,k+I = c &,k+l = k I (3.la) 

kzodd kzeaen 

v, = i Et-,,.,, = j + i j = integer . (3. lb) 

Eq.(3.la) ensures that spin tune, I/, , is independent, of par- 
ticle energy. Eq.(3.lb) can be used to set. the spin tune 
to a most favorable number in avoiding snake resonances, 
which will be discussed in the following section. As an 
example, in an accelerator with two snakes, N, = 2, the 
snakes should be separated by an orbital angle of K and 
the snake axes of these two snakes should be orthogonal 

to each other in order to maintain a spin tune of l/2. For 
accelerators with a large number of snakes, there are many 
ways to organize snakes to obtain proper snake superperi- 
odicity and proper spin tune. 

Let us consider an accelerator with N/2 pairs of (#2, &) 
snakes. The spin transfer matrix after passing through a 
pair of (#~a, $1) snakes is given by, 

r(&+$, &I) = s($2)qAl+$, e,+~)s(~,)qso+~, 63) 

The components of spin transfer matrix are given by, 

~~~(60 + $, 19,) = -e-i(~y-@l)(l - 2b2eiQ cos a), (3.2~~) 

q2(Bo + ;, 0,) zr -2iabe-i(C-2KxlN.‘~,) cos *. (3.2b) 

with rzl = -T;~; r22 = rfl and where Cp = K&+2Kx/N,+ 

d - 41, and the parameters, CL, b, c, and d are given by 
b = y sin F = (1 -+/z; x = (a” + [@)‘/2; 6 = K - cy; 

c = arctan[{ tan $$I; and d = arg(e*). 
The spin motion’in accelerator can then be obtained it- 

eratively by using the spin tracking equation through pairs 
of snakes: 

T(hI,l) = ~(&+I, k)qfL) , (3.3) 

where &,+I = @,, + 47~/N.. Eq.(3.3) can be solved using a 
power series expansion in the strength parameter b2; i.e. 

T1* = 2-p t- Tg’ + T;(f) t- . . , (3.3a) 

TI2 = T,(:) + T,(,2) + 2;‘;’ + . , (3.3b) 

where 5!‘,(f) = O(b2’) and 7’::) = O(ab”-*). A set of hierar- 
chy equations to solve Eq.(3.3) iteratively can be obtained. 
By solving the spin tracking equation, one can find the spin 
tune and snake resonance conclition. The final polarization 
is obtained from the expectation value of 03 in spinor wave 
function ,i.e. 

< s >= p?l*)2 - lT1212 = 1 - 21TI212 

where the unitarity condition, l1;I12 + IT1z12 = 1, has been 
used. 

3.1 Snake resonances 
Without lose of generality, we shall first discuss an ac- 

celerator with two snakes (&,&), located at an orbital 
angle of A from each other. The one turn rnap(OTM)) 
is given by 

q~(& + 2x, 0,) = -eFirrvn( 1 - 2Pe’* co9 +) , (3.4a) 

q2(& + 27r, 6’,) = -Ziabe-“(C-K”++a) cos 9 , (3.46) 

where AU, = $9 - 41 and + = Kf& + Ka + d - q5, is the 
characteristic phase of the orbital motion. The perturbed 
spin tune, QI, given by the trace of OTM, is cos nQ, = 
b’sin(29) with v, = l/2. The parameter b is 1 when 
(~1 = N,/2. Th d us uring acceleration through a resonance 
with strength (~1 z N,/2, the perturbed spin tune, Q,, will 
range over a whole integer unit and will cross the intrinsic 
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resonance comdition many times. Therefore polarization 
can not be preserved. When the maximum of I&# - $1 
equals the deviation of the vertical betatron tune from half 
integer, the resonance condition recurs. The maximum 
tolerable resonance strength is thus given by 

< E >= arcsin(/cos7r1<~‘/2)N 
c 8 * 

lr (3.5) 

Eq.(3.5) indicates that the tolerable critical resonance 
strength will be larger when the betatron tune is nearer 
to an integer. Nrrmerical simulations agree well with the 
prediction of Eq.(3.5). Tl le spin motion in the accelera- 
tor can then be obtained iteratively from the spin tracking 
equation, Eq.(3.3). To first order, we obtain easily 

~!i)(fj~,+~) _. iub(-l)“e-i(c-K”+~J){eiO 

Cn+l(K -‘- u.) + e -i(*+nK*)<n+* (K - u,)} (3.6) 

where Cn(n) is the enhancement function and is given by, 

L(q) = z. (3.7) 

At p = integer, we find that c,,(q) -+ n. This means 
that the off-diagonal kicks add up coherently on each turn 
throng11 snake pairs. This condition is indeed a nomi- 
nal resonance condition, since the spin tune equals a spin 
resonance position of fK. However since the betatron 
tunes of accelerator are not half integers, the condition 
K f V, = integer will never occur. Avoiding snake reso- 
nances, polarization will fall within the envelope of 

<< 5 >>= 1 - 21’1;212 = 1 - 8a2b2. 
A few important observations can be drawn here: 

1. T$(&, ,,,n) E 0 at an imperfection resonance, K = 
integer. This means that imperfection kicks cancel each 
other every two turns around the accelerator. Thus snakes 
cure most effectively imperfection resonances. At 2nK = 
integer, K f: l/Z, a similar cancellation of Tii)(8,) occurs 
at m = 2n turns around accelerator. 
2. The envelope function << S >> has many nodal points, 
where the depolarization driving term vanishes, i.e. b = 
0 or 1. These nodal points corresponds to the spin match- 
ing condition3v5, where Gy = K zt J(integer . N,)2 - 1~1~. 
Thus these nodal locations are separated approximately by 
N, units of G7. These nodal points play an esseutial role 
in spin restoration during the passage through a depolar- 
ization resonance. 

Based on the linear response theory of Eq.(3.6), we ex- 
pect that snakes will not work at a betatron tune equal to 
a half integer. Fig. 2 shows the polarization vs. the frac- 
tional part of the vertical betatron tune. A surprisingly 
many depolarization resonances appear at, a betatron tune 
of rational numbers, e.g. l/6, 5/6, l/10, 3/10, etc.. To WI- 

derstand these resonances, we have to study the spin track- 
ing equation beyond linear order in b. These higher order 
snake resonances can also be studied by solving spin hierar- 
chy equations3. In general, the snake resonance condition 
is given by, mu, +nK = integer, with m, n = odd integers. 

Since the betatron tunes of colliders, snch as RHIC, SPS, 
Tevatron, and SSC, have to avoid low order betatron res- 
onances for a long term orbital stability, snake resonances 
do not impose further constraints to the operational con- 

dition of the colliders. The resulting tolerable resonance 
strength3 agrees well with the critical resonance strength 
of Eq.(3.5). One can generalize the discussion to multi- 
snake accelerators, in which the snake resonance condition 
is modified by the snake superperiodicity P,. At higher 
snake superperiodicities, there are fewer snake resonances, 
yet the resonance width is increased. The basic physics 
remains however unchanged. 

Y 

m Beam polarization after passage through a single spin 
resonance is shown as a function of the fractional part of 
spin resonance tune. Higher order snake resonances are 
seen clearly. 

3.2 Overlapping Resonances 

The spin resonance tune and resonance strength are in- 
trinsic properties of the lattice design as well as the beam 
emit tance. Important intrinsic resonances are normally 
well separated and can be treated as isolated resonances. 
However intrinsic and imperfection resonances may over- 
lap. Section 3.1 showed that imperfection kicks cancel each 
other every two turus around accelerator. When an intrin- 
sic resonance is present, the self cancellalion mechanism of 
depolarization kicks disappears. Spin becomes susceptible 
to depolarization kicks. 

Fig. 3 shows tolerable resonance strengt,hs of overlap- 
ping imperfection and intrinsic resonances. When the 
strength of an intrinsic resonance, IEintl, is very small, the 
tolerable imperfection resonance strength, \timpI, becomes 
very large due to the self cancellation mechanism of Sec- 
tion 3.1. However, when IE~,,~I is slightly increased, toler- 
able (eimpl decreases drast,ically until about lcimpI/J?$ 5 
0.3, where the imperfection resonance strength plays a 
minor role in depolarization process. Tolerable intrin- 
sic resonance strength can then be increased nntil abont 
IQ&+ < 0.4. Tl le o erable imperfection strength will t 1 

be Iw,,~ I/F 5 0.3. For the SSC and RIIIC, we expect 
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Jcimp//% 5 0.05 with 0.3 mm rms closed orbit distort,ion3. 
Beyond this intrinsic resonauce strength, the perturbed 
spin tune plays a decisive role in determining the tolera- 
ble intrinsic and imperfection resonance strengths until the 
crit,ical resonance strengt,h, < F, >, is reached. The rela- 
tionship between tolerable intrinsic and imperfection res- 
onances is also valid for an accelerator with multi-snakes. 
A pleateau for a limiting imperfection resonance is clearly 
seen on Fig. 3, which indicates the sensitivity of spin t,o 
imperfection errors when an intrinsic resonance is present 
nearby. The sensitivity is clearly due to the disappearence 
of the self cancellation mechanism. To achieve a higher tol- 
erance to imperfection resonances, we can set alimit on the 
tolerable intrinsic resonance strength as Icintl/% 5 0.4, or 
N, L 5)fint). 
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l ,,,l(N,/21 
J?iQ Correlation between tolerable intrinsic arid imper- 
fection resonance strengths for N, = 2 and N, = 16. See 
Section 3.2 for further discussion. 

3.3 Snake Imperfections 
When the spin rotation angle, 4, of Eq.(3.1) deviates 

from x by A4 = 7r - r$, the spin transfer matrix of snake 
becomes, 

S(#b) = e -i~a,.deifa..de-i~a,.a 

(3.8) 

Thus the spin rotation angle error is equivalent to an im- 
perfection spin resonance, with E$, = $. The corre- 
sponding spin tune then becomes energy dependent. To 
leading order, we obtain 

cos AU, = % cos(2Gy?r/N,) sin”(y), (3.9) 

where the linear drpendcnce of Eq.(3.9) on N, is due to 
the assumption that each snake has an identical systematic 

error in the spin rotation angle. In reality, the snake rota- 
tion angle may deviate from x randomly, so the resulting 
spin tune modulation will not increase linearly with the 
number of snakes. Tracking calculation shows that the 
characteristic behavior is similar to that of Fig. 3. 

Besides the error in 4, the snake axis angle! 4, may also 
deviate from the ideal situation. The resulting spin tune 
is again energy independent (Eq.(3.lb)). The snake reso- 
nance condition determines the tolerable snake axis angle3. 

3.4 Snake Experiments 
Recently, Krisch et al.’ have carried out successfully 

a series of experiments in the IUCF Cooler Ring to test 
snake concept. Using a single solenoid snake, polarized 
protons have been accelerated through imperfection and 
intrinsic resonances without losing polarization. The ex- 
periments also discovered synchrotron spin resonance in 
a proton storage ring. Synchrotron spin resonances have 
played important roles in electron storage rings, but have 
never before been found in the proton storage ring. Snakes 
cure synchrotron spin resonance as well. Along with ex- 
perimental tests with full snakes, the partial snake concept 
of Roger7 has also been studied extensively. lndeed partial 
snakes can be used in low to medium energy machines for 
correcting imperfection resonances. An interesting ques- 
tion involves the evolution of spin tune when snake is adi- 
abatically turned on. Numerical tracking calculations have 
been performed to study the problem. A new series of ex- 
periments using a solenoid rf kicker’ have been approved 
at the Cooler Ring to study more complex problems, such 
as overlapping resonances, spin tune, etc. 

4. Snake Design 
Since the invention of the snake idea by Derbenev and 

Kondratenko, the design of snake and/or spin rotator has 
become an interesting task. There are many varieties of 
snake designs ‘18. For low to medium energy accelerators, 
Helical type snakes8 seems to offer advantages in obtaining 
smaller transverse orbit displacements. At higher energies, 
snake design is flexibile. 

The essential feature of the Steffen snake is the sym- 
metric arrangement of vertical bending magnets and anti- 
symmetric horizontal bending magnets. These features can 
be preserved in the following modified snake configuration 

S, = (-H, -V, mH, 2V, -mH, -V, If), 
where m = 2 corresponds to the Steffen’s snake. The num- 
ber m is determined by geometry, i.e. 

(m - 1) (d + $(m - 1p. + e, -t e,) = e, + c, + 2 e, . 
The spin rotation angle, 4, and snake axis angle, I$,, are 
given by 

4 cos z = cos2 *, + cos 7n$fr, sin2 & (4.1) 

COSq5# = 
- sin +!s cos *, 

cos2 9 + sin2 + cos2 *, 
(4.2) 

Note that mul,, and $, are the relevant variables in de- 
tcrruining d, and r$,. For a partial snake, we have r$ < x. 
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\Vhen $*, $+, are small, one obtain then 6, x 2m$,&, and 

$b,M;++. Fig. 4 shows &, &, relationship of Eq. 
(4.1) and 4, vs. $v for m = 2. When 4, = 0, or r, the 
snake axis is along the radial i axis. The compact snake 
configuration saves about 15% of total length. Besides, t,o- 
tal ,r Bd! and the horizontal orbit displacement, I), , are 
also reduced. 

By adjusting the parameter m, we can obtain a proper 
distance 2d between two halves of a snake. The orbit dis- 
placements at middle of two halves of a snake can be cor- 
rected by a orbit shifter of (-IT’, r/‘) at both ends of a 
snake. However when the distance 2d becomes large, we 
will have mzl. Obviously, the total length and the radial 
orbital displacement of a snake increases as well. Such a 
split snake configurat,ion is not practical for an insertion 
detector area. It can be used in accelerators with two ad- 
jacent straight sections separated by a quadrupole. Such 
a snake configuration eases design criteria of low euergy 
(5 30 GeV) accelerators. 

To fit a collider interaction region (IR) into the space 
between t,he split snake, the snake configuration can be 
modifieds to obtain split snake with m = 2. The advan- 
tage of the split snake configuration is that the spin in 
the mid section of a snake will be in the horizontal plane. 
Such a snake therefore serves a dual purpose of being a 
snake and a spin rotator for helicity state experiments. 
For a spin up particle passing through a half snake, the 
spin orientatiou becomes S, = - sinm$, sin&, ; S, = 

sin2 ?* sin 211, ; S, = 0. Such a scheme can save the need 
of four spin rotators in a polarized proton experiment. 

5. Conclllsiorl 
The current understanding of polarized proton acceler- 

ation in the high energy accelerator has been reviewed. 
With proper closed orbit correction, the overlapping res- 
onance between the intrinsic and imperfection resonances 
can be controlled. The number of snakes needed is found 
to be proportional to the intrinsic resonance strength, i.e. 

N, z SICi,tl. The snake imperfection is more important 
with a large number of snakes. We also discuss the snake 
design issues. A split snake configuration can serve as a 
snake and as a spin rotator for the helicity state experi- 
ments. 

t On leave of absence from Accelerator Development De- 
partment, Brookhaven National Laboratory, Upton, NY 
11973. 
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u Relation between & and & is shown for the Steffen 
snake configuration. The corresponding snake axis angle 
is also given. 
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