The APS Transfer Line from Linac to Injector Synchrotron*

R. K. Koul and E. Crosbie
Argonne National Laboratory
Advanced Photon Source
9700 South Cass Avenue
Argonne, IL 60439

Abstract

The design of the APS transfer line from linac to injector synchrotron has been completed. The details of this transfer line are given below.

This paper describes the low-energy-transfer-line designed for the APS. The low energy transfer line constitutes two transport lines. One of these lines runs from linac to the positron accumulator ring, also called "PAR", and is 23.7138 m long. The second part of the low energy transport line runs from the "PAR" to the injector synchrotron and is about 30.919 m long. The above length includes two quadrupoles, a bend magnet and a septum magnet in the injector synchrotron (see Fig. 1 and Table 2).

The positron bunches of emituance $\epsilon_{\mathrm{N}}=6.6 \mathrm{~mm}-\mathrm{mrad}$ arriving at the end of the linac at 450 MeV have twiss parameters as given by Nassiri [1].

$$
\begin{equation*}
\alpha_{x}=1.6808, \beta_{x}=7.2161, \alpha_{y}=-1.77586, \beta_{y}=6.6888 \tag{1}
\end{equation*}
$$

The transfer line (see also Yoon and Crosbie [2]) from linac to "PAR" is made up of ten quadrupoles and one bending magnet B 4 (see Fig. 1). The bending magnet bends the beam by 0.2 radians towards the septum magnet in the "PAR". The five quadrupoles in the region between the bend magnet and the septum magnet in the "PAR" give a phase shift of 2π radians, in order to get dispersion free bunch at the end of the septum magnet. The twiss parameters at the end of the linac given above are matched with the twiss parameters and the dispersion functions at the end of the septum magnet, in the "PAR" lattice structure. These parameters at the end of the "PAR" septum are given by

$$
\begin{align*}
& \alpha_{\mathrm{x}}=-0.94910, \beta_{\mathrm{x}}=2.1261 . \alpha_{\mathrm{y}}=-0.02429 \\
& \beta_{\mathrm{y}}=8.2401, \eta_{\mathrm{x}}=0.0, \eta_{\mathrm{x}}^{\prime}=0.0 \tag{2}
\end{align*}
$$

The matching procedure was carried out using computer code "COMFORT". The distance (2.9 m) between the last quadrupole and the septum magnet in the "PAR" is fixed because of the considerations of the available space in that region. The layout of this region of the transfer line is shown in Fig. 1.
Details of the magnet dimensions and their strengths are

[^0]given in Table 1. The order of the magnets is the order in which they appear in the transfer line as one traverses from the linac to "PAR". The β functions in the horizontal and the vertical plane along with the dispersion function, η, in the horizontal plane are shown in Fig. 2. The maximum β_{y} is approximately 20 m and occurs at the quadrupole before the bend magnet. The maximum value of the β_{X} is about 16 m .

In addition to the above elements, the linac to "PAR" part of the low energy transfer line contains eight steering magnets and seven beam position monitors. Of the eight steering magnets four are for steering in the horizontal plane and the remaining four are to be used for steering in the vertical plane. Similarly, out of the seven beam position monitors three are to be used for diagnostics in the horizontal plane and the remaining four for diagnostics in the vertical plane. The relative positions of these steering magnets are also given in Fig. 1. The calculations for the strength and the dimension of these steering magnets was carricd out using a computer code locally developed for this purpose. However the code was tested for the calculation of twiss parameters against the "COMFORT" run.

The second part of the low energy transport line carries the positron bunches from the "PAR" septum to the injector synchrotron. Again the energy of the positron bunches is about 450 MeV . This section is made up of two bend magnets ($\mathrm{B} 1, \mathrm{~B} 2$), and eleven quadrupoles joining the "PAR" septum magnet "B3" on the one end and the injector synchrotron septum magnet on the other end. The bend magnet B 2 bends the bunch, coming from the "PAR" septum magnet (bend angle of -0.2 radians) through an angle of 0.2 radians. The section between the bend magnet B 2 and the septum magnet B 3 is the same as the section between the bend magnet B 4 and the septum magnet B 3 . It produces a dispersion free beam in the region between $B 2$ and $B 1$. The next section between bending magnet B 2 and the bending magnet B1 has four quadrupoles which can be used as tuning quadrupoles for tuning on to four twiss parameters in the vertical and horizontal direction. The bend magnet B1 bends the beam at an angle of approximately -0.1859 radians towards the injector synchrotron septum. There are two quadrupoles in the section between the bend magnet B1 and the injector synchrotron septum, which are arranged such that the bunches entering the injector synchrotron are dispersion free at the end of the dipole magnet B (see Table 2). The detailed layout can be seen in Fig. 1, and the relative positions, the dimensions and the strengths of the magnets are given in Table 2. The maximum value of the β function from B2 to the injector synchrotron septum is about 26 m . In
designing the transfer line from the "PAR" to the injector synchrotron, some part of the injector synchrotron is included. The twiss parameters given by the injector synchrotron lattice at the beginning of the drift Ol (see Table 2) are matched with the twiss parameters given at the beginning of the "PAR" septum magnet given above (sign of the α function must be reversed) through the transfer line. Again, the computer code "COMFORT" was used for matching purposes. The twiss parameters at the position Ol are given below. The sign of the α function corresponds to the motion from "PAR" to the injector synchrotron.
$\alpha_{\mathrm{x}}=0.4620, \beta_{\mathrm{x}}=2.1724, \alpha_{\mathrm{y}}=-2.5084, \beta_{\mathrm{y}}=15.6557$
The detailed form of the β_{x}, β_{y} and the η_{x} is given in Fig. 3. In addition to the above components this part of the transfer line contains six steering magnets and seven beam position monitors. Of the six steering magnets, three are used for steering in the horizontal direction and the remaining three in the vertical direction. Similarly, of the seven beam position monitors four are to be used for monitoring the horizontal position and the remaining three for monitoring the vertical position. The maximum $B \ell=$ 0.012 T.m for these steering magnets. These calculations were also carried out using the locally developed code. The details of their positions and other parameters are given in the Table 2.

Table 1 LTOP Parameters
(1.00 MeV. $\mathrm{B} \rho=1.303 \mathrm{~T}$-meter. Positive K_{1} meana horizontal defocussing,)
Input Twiss Parameters: $\kappa_{f}=1.6808 \beta_{x}=7.2 \mathrm{~s} 61, a_{y}=-1.7530, \beta_{y}=6.6888$

Eman	Lヶ¢	$K_{1}=5 i 8 \mathrm{mink}-1+\mathrm{mi}$	Taxtal	Tment	
ovirtor	$1: 1$				
Slemert	0 O	0.19			
Quadg:	03	139:\|\%1s			
Dasfor	: 3				
Quadus	0	- 0 \%159\% ${ }^{\text {a }}$			
Datrone	8.1				
Strring	O\%	0 04			
quades	31	-t2115xed			
Datfue	281				
Sput	Δ				
ciadigt	01	2mann			
0.3A:0:	$0:$				
siomes	-0,	0.14			
selsios	17659\%				
damics	01				
quasos	03	-2 misalsi			
driftes	01				
	Qis	013			
Stsipe?	0.1	02	0.1	$0 \cdot 1$	
DAITTu:	$0 \cdot 4$				
spext	01				
quada,	01	1.13660:			
dnirtor	01				
surums	${ }_{0}^{04}$	0.15			
gerstion	0.1				
quasose	91	-4.0761098			
Dxiftich	3.				
bluw		e 14			
sprytion					
Quadera	4	1.111			
DRISTO9	0.1				
Sestres	00_{0}	-11			
gelt					
Dxistion	8.1				
Quader	9	3atiscost			
chiftos	81				
Sinfiors	904	$0: 1$			
quadels	02	-3iswitis			
shify	0.5				
grta	2 sanissis?				
secions	$0:$	32	0.0	01	

REFERENCES

Ali Nassiri, Private communication.
[2] M. Yoon and E. Crosbie, APS note LS-119 (1988).

Table 2
PTOB Paramenters
($150 \mathrm{Me} \mathrm{V}^{\prime} . \mathrm{H} \rho=1.503 \mathrm{~T}$-meter. Positive K_{1} means horizontal defocussing.)
Input Twiss Parameters. $\alpha_{z}=1.6808 . g_{z}=7.2161 \cdot \alpha_{y}=-1.7586 ; \sigma_{z}=6.6353$ Output Twiss Parameters $\alpha_{c}=-0.0010 . \alpha_{x}=2.1261 . a_{y}=-0.0243 . \beta_{y}-3.2101$

Elenemt	Lengith	θ or Magnet Streagth 	Thetat	The: x^{2}
sceitob	01	4.2	0.0	32
DRIFTOI	2906706672			
QUAD. ${ }^{\text {did }}$	03	0.31323169		
DRIFTU:3 BPM.	09			
difftuls	0.1			
quadqua	0.3	36176003		
DRIFTOL?	0.1			
Steatimu.	0.93	4. 21		
	0.75			
DR3FTOR	0.1			
quad qu	03	10.2311		
DRIFTOH	01			
steering	005	0.05		
$\begin{gathered} \text { DRIFTOL1 } \\ \text { BP.4, } \end{gathered}$	0%			
DRIFTO11	0.1			
Quadig	0.3	-1.3910321		
daiftom	0.1			
stering.	00.3	0.1 .3		
$\begin{gathered} \text { DRIFTOLO } \\ \text { BPM; } \end{gathered}$	0:3			
DRIFTOIO	0.1			
quad qa	03	4.13661613		
DRIFTU9	0.1			
Stering,	0.65	0.15		
DRIFTO9	0.15			
SECND ${ }^{\text {a }}$	0.1	0.2	0.1	0.1
$\begin{gathered} \text { DRIF T:SE } \\ \text { BPM/ } \end{gathered}$	0.50			
DRIFT:3E	01			
QUAD.Q	0.3	-2.5210118		
DRIETAD	0.60			
QUAD: ${ }^{\text {a }}$	0.3	2.33 .136 .52		
DRIFTSC	0.7279615			
Steering,	0.03	0.18		
DRIFT:8	0.1			
quad:q6	0.3	-2.31912863		
DRiFTSE	0.5			
BPAT_{3}				
DRIFT:SE	0.10			
QUADQ	0.3	2.1502302		
DRIFT:A	0.1			
Steering,	0.05	013		
DRIFTS.	0.15			
sec.vodi	0.1	-0.18536022	. 092930.1	.09293011
DRIFTOT	1.739150176			
BPM.				
driftot	0.1			
QUADQ1	0.30	-1.32786061		
DRIFT:OG	0.9			
Quades	0.30	0.32701161		
DRIF ${ }^{\text {Oj }}$	0.9			
	(Inyde Boostes)	(Inside Booster)		
SACNOSEP	0.3	0.26151	0.1337%	0.13377
Driftos	135			
qUAD Q ?	030	0.633272		
DRIFT:03	0.313			
SEESTE	3077	-0.09239978	0.04619933	0.01619929
DRIFTO2	0.515			
QUAD Q1	0.50	0.710505		
DRIFTOI	4.1			

Figure 1. Low Energy Transport Line

Figure 2. Matching Between Linac and Accumulator

[^0]: *Work supported by U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. W-31-109-ENG-38.

