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Abstract 

In this paper we describe the determination of the properties of 
the above referenced cavities with particular emphasis on the 
damping of the higher order modes (HOM). Because mode 
frequency spectra were determined for a large number of shorted 
waveguide lengths, rather complete analyses are possible. Phase 
frequency plots have proved to be an invaluable aid in sorting out 
overlapping resonances and separating cavity resonances from 
waveguide resonances Algorithms for the determination of the 
parameters of several resonances simultaneously have been 
developed. Determinations of Q from multiresonance analyses are 
compared to those from single resonance analyses, and the changes 
are typically found to be small. 

I. INTRODUCTION 

The damping of higher order modes in accelerator cavities has 
been a subject of extensive study for many years. The primary 
technique employed has been to couple the energy out through wave 
guides-to be terminated in matched ioads. ComFuter programs such 
as MAFIA (as in this paper) have been extensively emnloved to 
assist in the design of such structures. To obtain val;es of the QcXt 
and the shifted resonant frequencies due to the wave guide loading, 
it has been necessary to develop special analysis techniques to be 
applied to the results obtained from a program such as MAFIA. The 
methods of Kroll-Yut (KY) and Kroll-Lin2 (KL, or KYL when 
referring to them collectivelv) are examples of such techniaues and 
will beemployed for the two problems which we discuss in this 
paper. The thrust of KYL was aimed towards minimizing the 
number of computer runs needed. The two examples discussed here 
are, however. considerably more complex than those discussed in 
those papers, and the rather large number used here have permitted a 
more complete overall analysis of the mode spectrum. Also, since 
we are still acquiring experience with these methods, the larger “data 
sample” is very useful for providing validation. 

A problem which we hake experienced in applying KYL has 
been the separation of waveguide resonances from cavity 
resonances. One deals here with the spectrum of a lossless coupled 
cavity waveguide system, and any run at a particular waveguide 
length will produce a series of resonances, some cavity associated, 
some waveguide associated, and some, when the two occur at 
neighboring frequencies, strongly coupled. When the waveguide 
coupling is not too strong, these cases can be readily distinguished 
by inspection of field plots. Current interest, however, centers 
about the strongly coupled case where this method has not always 
been convincing. We have found phase-frequency plots to be of 
great assistance in sorting out this problem. 

The phase of a given computer determined mode at a particular 
waveguide length is given by 

cp = 2 7c Li h, 

As the length is varied ear:: mode traces out a section of a 
phase-frequency curve. As pointed out by KY each such section is 
displaced by a multiple of K from a single universal curve that 
applies to all of the modes, The designation “phase-frequency plot” 
is intended to refer to that single universal curve. An example is 
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and a unique symme6yrelation between the fiilds in the two outputs 
has been assumed in the above discussion. These were assured by 
the boundary conditions applied in the MAFIA calculations 
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provided by Fig. 1. It is based on data reported by Higo et. al at the 
LINAC 90 conferences. We were nrovided with a list of the lowest 
seven modes arising from MA’FIA runs at twelve different 
waveguide lengths. The ouantitv n x was subtracted from the phase 
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of the n’th m6de at each length and the entire set of 84 points 
plotted. As is apparent from Fig. 1, the points do indeed trace out a 
smooth curve. The high density of points in the low frequency 
portion of the curve results from the high degree of overlap which 
results from the n rc shifts. The smallness of the scatter is an 
indication of the high qualitv of the cornouter output. The cavity 
resonances arc as&aid with the steeper portions of the curve, and 
as we shall discuss later, the low freauencv nortion is indicative of 
overlapping resonances. The prisence bf these overlapping 
resonances has been the motivation for the development of 
multiresonance fitting procedures. Both single mode propagation 
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Fig. I Phase frequency plot fiv JLC protot?pc cnviy. 

2. THE JLC CAVITY 

The KYL methods are based upon the following representation 
of the phase-frequency relation: 

cp(0) = Carctan ( “I 
-)-x(w) 

L W”l 

XC@ =x0+ WY 

For each mode, ui2v is the Q value and u the resonant frequency. 
The branches of the arctangents are to be chosen so as to obtain a 
smooth curve. The function x is intended to represent the effect of 
resonances not taken into account explicitly. If one ignores x, it is 
apparent that as the frequency passes through a resonance the phase 
decreases by n. If all resonances occurring within a given 
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frequency interval are recognized and included explicitly in eq. (I), 
then x may be presumed to be due to resonances outside the interval 
and therefore to vary by substantially less then n over the same 
interval. Thus we do not consider a “feature” in the phase-frequency 
plot to correspond to a resonance unless a phase change of 7t is 
involved, and strongly overlapping resonances produce phase 
changes which are multiples of rr. 

Applying these considerations to Fie. 1, we conclude that the 
regionLbeiow 18000 MHz contains three overlapping resonances, 
the rerrion 18000-24000 MHz is resonance free. and the region 
24OOOr26000 MHz contains two resonances. The isolated point 
above 26000 suggests an additional resonance, but because of 
inadequate supporting information we ignore it in our analysis. We 
determined resonance parameters for the three low frequency and 
two high frequency parameters separately. To obtain parameters for 
the low frequency resonances we chose eight more or less evenly 
spaced data points between 15340 and 18236 MHz, and determined 
the six resonance parameters and two 2 parameters so that the 
theoretical curve passed through the eight selected points. The 
results of this procedure are shown in Fig. 2. The resultant fit is 
seen to be excellent, and the theoretical curve fits the data accurately 
until the high frequency resonances are approached. Attempts to fit 
the data Tvith only two resonances failed and showed clearly that the 
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Fig. 2 Three resonance eight pointfitfor the low frequency 
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,,,‘;; 

x 

20000 25000 
f (MHz) 

Fig. 3 Composite plot of the lowfrequencyfit of Fig. 2 with a two 
resonance six pointfit to the high freqrcency resonances. The break 
point is at 24100 MHz. 

phase span in the resonance region combined with the slope of the 
resonance free region is inconsistent with the assumption that only 
two resonances are involved. For the high frequency resonances we 
selected six points in the range 25006 to 25956 MHz and determined 
four resonance parameters and two x parameters so that the 
theoretical curve passed through the six selected points. A 
composite curve containing both fits is shown in Fig. 3. The break 
between the two representations occurs at * 24100 MHz where the 
two curves cross. Frequencies and Q values that yielded Fig. 3 are 
shown in Table I. The fizures in Darentheses are those obtained 
from single resonance fair parameter fits carried out with data 
points selected from the neighborhood of the resonance as 
determined bv visual insuection of Fie. 1. Mode 2 is not discernible 
in this way and attempts to find it with the four point method after its 
position had been determined were not successful. Nevertheless the 
results show that the four point method can give quite reliable results 
even in the presence of severe overlap. It appears that the free slope 
parameter does a quite effective job of taking account of the effect of 
omitted resonances on the Q values. 

Table I. Frequencies and Q’s for the JLC Cavity 

Mode Number Frequency (MHz) Q 

1 
2 
3 
4 
5 

15375 (15552) 10.9 (12.0) 
16077 7.1 
17048 (16927) 14.8 (13.5) 
25121 (25138) 43.1 (42.0) 
25814 (25814) -1000 (-1000) 

We have not identified the modes because we have not seen the 
associated field plots. Fig. 1 of ref. 3 plus the symmetry imposed in 
the MAFIA calculations suggest TM1 10-x for mode 1 and TE 111-O 
for mode 2 or 3. We suspect that the other of these two modes is 
associated with the radial slot in the disk. 

3. THE PROTOTYPE B FACTORY CAVITY 

The cavity referred to in the heading above consists of a pill box 
with three waveguides mounted symmetrically on one end, 
emerging perpendicular to the end, and with the wide dimension 
perpendicular to the radius. In addition it includes a cylindrical 
section of smaller radius intended to represent the beam pipe, 
symmetrically disposed on the two ends and terminated with a short. 
A computer simulation of half the cavity is shown in Fig. 4. It is a 
B factory prototype only in the context of a study of higher order 
mode damping. 

Fig. 4 MAFIA simulution of the prototype B factory cavity usedfor 
the MAFIA computations. 

Because the cavity is symmetric under 1200 rotation about the 
beam axis, its modes can be characterized by an m=-1, m=O, or 
m= I symmetry index corresponding to the lowest fourier 
component in the azimuthal fourier expansion of the fields. The 
m= i-1 modes are degenerate, but because only half the cavity is 
modeled onlv a single linear combination of this pair appears. Thus 
we can anal&e them=0 and m=I modes separately. 

MAFIA calculations were carried out for 14 different lengths 
of waveguide, beginning with zero. The results of the calculation 
are summarized in Fip. 5. Connectine lines have been drawn which 
preserve the mode &der of m=Z-and m=O modes separately. 
Identification was based upon the fact that fields at the end of the 
waveguide should be equal for the m=O case and in the ratio -1 to 2 
for the m=I case (the -1 refers to the amplitude in the full width 
waveguide). Because the computer mesh does not accurately reflect 
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Fig. 5 MAFIA computed mode spectra of the Prototype B factory 
cavity shown as a function of the length of the shorted waveguides. 
Connecting lines join points belonging to the same symmetry class. 

m=O square points. m=l xpoints. 

the symmetry of the physical structure, these relations are satisfied 
only approximately, and large de’viation occurs at the crossing 
points. The n rdisplacement procedure is applied to the m=O and 
m = I sequences separately, and the phase-frequency curves 
illustrated in Fig. 6 emerge. The squares mark m=O and the x’s 
m=I. The four “star” points are from the crossing regions and have 
ambiguous symmetry. Both points appear on each curve. These 
points were avoided in carrying out frequency-Q determinations. 
The figure also contains points from a calculation carried out at 
length 61.29cm with a magnetic boundary condition imposed at the 
waveguide ends. These fall on the universal curves if their phase is 
displaced by an extra 7t/2. 

The m=O curve exhibits a maximum at the low frequency end 
instead of the usual monotonic decrease. This is due to a mode 
trapping phenomenon which has plagued the application of 
waveguide damping. The mode involved here is the TMutt. It has a 
frequency of 868.36 MHz for the closed cavity, well above the 
waveguide cutoff of 786.86. As the waveguides emerge from the 
cavity end and lengthen, the frequency of the mode is pulled down 
and eventually falls below the guide cutoff frequency. When this 
happens the phase-frequency plot is guaranteed to exhibit a 
maximum as a function of frequency. (The reality of this 
phenomenon has been confirmed with an analytically solvable 
model.) The mode did not actually fall below cutoff at the largest 
length (61.29cm). However, the appearance of the maximum is 
considered to be the indication that it will eventually do so. 
Replacing the electric boundary condition with a magnetic one at the 
waveguide end has an effect similar to increasing the length, and 
such a calculation was performed to see whether it would exhibit an 
extra trapped mode. Indeed such a mode was found at 773.87 
MHz, which we take to be a confirmation of the above. Apart from 
the trapped mode, the m=O curve shows only one resonance, a 
detrapped and low Q counterpart of the trapped TMutl mode. The 
determination of the resonance parameters of this mode is degraded 
by the fact that the KY phase-frequency formula does not include the 
trapping phenomenon, so that the Q determination appears to be 
uncertain up to a factor two or so. 

The m= I phase-frequency curve is of the expected form and 
clearly shows the seven lowest waveguide damped m=I modes. 
Four parameter single resonance fits have been carried out using 
both the KY and, where adequate data was available, the KL 
method. The phase-frequency plot identifies appropriate regions for 
the selection of data points for fitting and enables one to avoid the 
study of waveguide resonances. The two methods are found to be 
in excellent agreement except for the low Q TMutt mode. As 
mentioned before, we consider this to be due to the fact that the 
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Fig. 6 Phase-frequency plot for the protovpe B factory cavity. 
m=O square points. m=l xpoints. 
ambiguous (plotted twice) star points. 

phase-frequency formula does not include the trapping 
phenomenon. These results are summarized in Table II. The 
waveguide loaded frequencies FL for the trapped modes are taken 
directly from the MAFIA results. 

Table II. Frequencies and Q’s for the Prototype B 
Factory Cavity 

Mode type Fu 
NW 

TMolo 617.17 
TEIII 711.61 
TMoll 868.36 
TM011 

TM110 909.58 
=210 959.92 
TM111 1027.22 
TM112 1073.44 
WI13 1090.53 
TM1 14 1109.39 

unknown 1163.15 
(m=l) 

FLOW FLOW 

(MHz) ww 

610.94 
708.00 

<773.87 
841-842 840-845 
906.7 906.7 
956.9 956.6 

1021.3 1021.4 
1073.0 1073.7 
1090.0 1090.0 
1108.6 1107.5 
1162.0 

QWY) QW) 

trapped 
trapped 
trapped 

15-17 24-35 
55 56 
56 55 
32 31 
338 336 
401 411 
300 318 
333 

The TMtln modes above 1070 MHz are associated with the 
sudden opening of the beam pipe to propagation in the TElt 
waveguide mode (cutoff at 1064 MHz). The bulk of the stored 
energy as well as the extra nodes are in the beam pipe for all three. 
An experimental investigation of this cavity has been carried out by 
Voelker et al4. Absorbers were placed in the beam pipe so that 
agreement with computed Q’s of the “beam pipe” modes is not 
expected. Otherwise reasonable agreement was obtained. 

We thank T. Higo and M. Takao for providing as with the 
MAFIA generated data for the JLC cavity, and X-T. Lin for 
assistance with the graphics. 
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