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Abstract 

When bunch lengths are much smaller than the dimensions 
of the structure of interest, it is often either impossible or 
excessively time consuming to obtain estimates of the loss 
parameter by numerical methods. Furthermore, numerical 
results are not generally scalable to other bunch lengths, 
chamber angles or sizes. In the case of a cylindrical cham- 
ber very large compared with the bunch length, and tapers 
on each end, an estimate for the loss parameter may be 
made by first making some assumptions about the distri- 
bution of electromagnetic fields, and then calculating the 
electromagnetic energy left behind when the bunch leaves 
the chamber. The result is an analytic formula for the 
loss parameter, with no free or empirical parameters, that 
agrees well with TBCI calculations of a 20” tapered cham- 
ber. Besides its intuitive appeal, this formula is especially 
useful in providing design assistance as to the best taper 
angle, diameter, and chamber lengths. 

Electromagnetic Field Model 

It is well known that for y >> 1 in free space or in a uni- 
form beam tube, the electromagnetic field of a short bunch 
of electrons is greatly compressed, so that it is almost en- 
tirely perpendicular to the direction of motion. The energy 
stored in the electromagnetic field traveling with the bunch 
is likewise confined to a thin pancake whose thickness is ap- 
proximately the bunch length. If we allow the cross section 
of the beam tube to have a sudden change, the pancake can 
deform, generate reflections or even thicken, but it must 
do so within the constraints imposed by the finite speed of 
light, i.e. causality. 

The general vacuum chamber geometry considered here 
is shown in figure 1. Under certain conditions, the loss 
parameter is independent of the outer radius R and may 
be calculated as if the taper continued indefinitely. For a 
highly relativistic uniform bunch of length Al, if the path 
length ABC is greater than L by at least Al, then the per- 
turbation of the electromagnetic fields at A cannot reflect 
off the outer wall at B and catch up with the back of the 
bunch at C, where the bunch leaves the chamber. This is 
only approximately true for a gaussian bunch. Once the 
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Figure 1: A cylindrically symmetric chamber with tapered 
ends is shown in this figure. Points A and B are the 
beginning and end of the chamber. Point B is the point 
where a signal from A could reflect and reach C in the 
minimum time. 

bunch re-enters the beam pipe, it is difficult for reflections 
of the electromagnetic pancake to catch up to the back of 
the bunch because the group velocity in the beam pipe is 
substantially less than c, and the walls of the beam pipe 
have nonzero resistivity. So any energy left in the chamber 
after the bunch leaves cannot effectively interact with the 
bunch charge and will be ‘lost’. From the geometry in fig- 
ure 1, it can be seen that the energy lost is approximately 
independent of the outer radius R if 

vqFq’iL’-L>a (1) 

Bench measurements showing this effect does indeed occur 
can be found in [lj. 

When a short uniformly charged bunch of length Al and 
charge AQ first enters the taper, we can expect on phys- 
ical grounds, that the electromagnetic field will look like 
that shown in figure 2. The shape of the leading edge of 
the shell is determined by causality. It is a constant dis- 
tance from point A in the section shown in figure 2. For 
radial coordinate T less than b, the field lines are straight; 
essentially the same as when the bunch was in the beam 
pipe. Causality would allow the trailing edge to be further 
behind the leading edge than Al shown in the figure. This 
thickening of the shell could come about from perturbed 
fields generated at different azimuthal points but at the 
same longitudinal position as point A in figure 2. The ef- 
fect would be most pronounced for L < b’/u and stronger 
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Figure 2: A highly relativistic uniformly distributed bunch 
of electrons will generate a thin shell of intense electromag- 
netic field in a shape approximately as shown in this figure. 

for steeper taper angles. We will neglect this effect. By ne- 
glecting it, we will overestimate the strength of the electric 
field in the shell as well as the energy loss. 

We will further assume that reflections from the entrance 
taper, traveling in the opposite direction of the bunch, are 
not significant. They are not appreciably seen in TBCI cal- 
culations, and in principle, could be removed by smooth- 
ing the discontinuity at point A. If there are no reflections, 
there should be no field behind the segment of charge. 

By applying Gauss’s law to the surface bounded by 
the ‘wavefronts’ associated with the front and back of the 
bunch and the outer annular segment of length AZ located 
at angle 8 we have for T 2 b, 

E= 2nQ 
Al(s sin 8 + b) (2) 

The magnetic field can be computed in exactly the same 
manner using Ampere’s law. The total electromagnetic 
energy in the field volume T > b is, - 

AU=& 
J 

ff 

E2dV = WA” (Jsi;;+b) (3) 
0 

A factor of two was included to take into account the mag- 
netic field contribution. The integral can be evaluated for 
two separate cases, s > b and .s < 6. We are mainly inter- 
ested in s > b where, 

AU=Fd 2”b ln (s + dm) tan0/2 + b 

s2 2 (s - dn) tan8/2 + b 

(4) 
A simpler formula can be obtained by making slightly 

different assumptions about the shape of the electric field 
lines. When s is large compared with the beam pipe radius 
b, the ‘wavefront’ approximately resembles a pure spherical 
shell with radius 3 centered on the chamber axis, extending 
to angle 6’. The energy stored in fields for T > b when the 
particle is at position s = L, is calculated by integrating 
the energy from a minimum angle 00, where 

80 = tan -‘(b/L) (5) 

b,‘, - - - _ - - - _ 
b 

Figure 3: The effective exit radius of the beampipe b,f/ is 
defined in this figure as the radius for which a signal from 
point D could catch up with the back of the bunch at point 
C. 

to the taper angle 8. The result of this integration for 
uniformly charged bunches is, 

f+?x1 
Al n [ss] 

(6) 

Equation 4 reduces to equation 6 when b/L << 1 

Formulae for the Loss Parameter 

Notice the field energy stored in the volume T > b 
grows with increasing s. We will assume that when the 
beam reaches the far end of the chamber, the field is re- 
established in the beam pipe and no further energy is lost. 
That is, when the bunch position is at s = I;: the energy 
in the electromagnetic field for T > b is ‘scraped off’ and 
can never again interact with the bunch. This assumption 
is similar to one made by Dome [3] that for T < b the fields 
of a point charge in the cavity are the same as they were 
when the charge was in the beampipe. An analogous ar- 
gument was made by V.E. Balakin and A.V. Novokhatsky 
[2] for energy lost by a structure consisting of a sudden 
reduction in pipe diameter. 

Of course, an assumption of pure scraping for T < b pre- 
cludes diffraction of fields at the exit end of the chamber 
which would tend not to scrape off so much field energy. 
Diffraction effects at the exit of the chamber occur if re- 
flections of the front of the pulse from the exit taper (point 
D in figure 3) can reach the beampipe opening before the 
back of the bunch. A shallow taper will tend to capture 
much more of the electromagnetic energy. If we replace 
AZ in figure 3 with cr, then the effective exit radius for 
gaussian bunches may be defined as, 

b ef, z b + ccot 812 (7) 

Taking the formulae for the energy loss of a short uni- 
form bunch, equations 4 and 6, and assuming no thickening 
of the electromagnetic pulse, we can average over a gaus- 
Sian longitudinal distribution to arrive at an expression for 
the energy loss for a gaussian bunch. 

‘193 

PAC 1991



0 200 400 600 800 
Chamber Length L (cm) 

Figure 4: TBCI calculations for a 20 degree tapered cham- 
ber with beam pipe radius of 2.5 cm are plotted with 
the equation 6, with and without the modification due to 
diffraction applied. 

Let the charge per unit length be X and substitute X for 
AQ/Al into either equation 4 or 6. The expressions for 
the energy lost can then be written in the form, 

dU = X2f(L, 6, b)ds :8) 
where ds is an infinitesimal length of charge. For gaussian 
bunches, 

Q -92/2& 
A=75&e 

(9) 

Integrating dl? yields, 

u = &$f(l$,b) (10) 

The loss parameter ‘is defined as lc = U~0ss/~2 where Q 
is the total bunch charge and U is the total bunch energy 
loss. Applying this form to equation 6 yields for a gaussian 
bunch, 

A? = $9 [t:$$t!)] 
where all variables are assumed to be written in CGS units. 
In more commonly used units: 

k [V/pC] = o.508 - In [ t~~{~/fjl] 
fl bl (12) 

Comparison with other Estimates 

A comparison between TBCI calculations [5] and the an- 
alytic formula, equation 6, for 20’ tapers is shown in 
figure 4. With no diffractive correction applied, i.e., 
190 = tan -‘(b/L), q t e ua ion 6 consistently gives a higher es- 
timate of the loss factor, particularly for shorter chamber 

lengths. Rather surprising is the fact that the difference 
between equation 6 and the TBCT results is more or less 
constant with respect to chamber length, indicating the 
corresponding difference in energy loss occurs only when 
the bunch enters or leaves the chamber. Figure 4 also 
shows that, even though for most of the range of chamber 
lengths calculated, the ‘catch up’ condition (equation 1) 
is not obtained, the effects of the reflections are small. 
When a diffractive correction 00 = tan-‘(b,,f/L) is ap- 
plied, there is constant reduction of the loss of approxi- 
mately the right magnitude to account for the discrepancy 
between the TBCI data and the formula. 

The other comparison I will make is with an analytic 
formula derived for 90 degree tapers by Heifets [4]. That 
is, 

k= 

subject to the restriction L >> b2/r. When 0 -= 90” is put 
into equation 6 and L >> b the difference in k between and 
equation 6 and equation 13 approaches 

1 ln 2b 
CT&F o- 

This difference is significant compared with the total loss 
factor unless L/b >> b/u, but this is exactly the limitation 
given to equation 13. 
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