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Fcrritc tuned cavities must operate under a wide range of 
ac’cclcrating frcqucncics. The tuning is done by modulating the 
current in the coil surrounding the ferrite. Feedback controllers 
arc used to improve the tuning condition by sensing the phase 
error. The design of controllers currently in use is based on clas- 
sical frcyucncy domain techniques. Classical controllers in this 
application arc ser:sitive to variations in the tuning system 
parameters. Also, these controllers generally fail to provide cor- 
rcct transient response when thcrc is beam in the cavity, since 
the beam loading changes the transfer function of the system. 
Wc have designed a robust and adaptive controller based on 
sliding mode techniques for a cavity tuning system on the ISIS 
synchrotron. The techniques arc extendable to other systems. 

I. INTRODUCTION 
The analoguc tuning loop used on ISIS RF systems (Figure 

1) was unable to provide the required accuracy. Hence a digital 
fccdl‘orward controller based on inverse transfer characteristic 
of’ the type shown in Reference 1 was used. The application of 
such 3 digital ltx)p has also been proposed for TRIUMF cavi- 
tic?. Stability of such a feedback loop is ensured by exact pole- 
/cm cancellation, which is difficult to achieve in practice. Also 
the strlbility cannot be guaranteed at all operating conditions for 
;rll the tuning systems due to variations in system characteris- 
tics. Ideally, a stand-alone, self-correcting, intelligent feedback 
controller would he well-suited for the system. Such controllers 
can bc designed in classical frequency domain or with the 
rcccntly invented, more powerful time-domain approach such 
as adaptive or variable structure controllers. The advent of new 
tcchniqucs would allow us to include variation in tuning system 
conditions due to beam loading, since the &am effects on the 
cavity can be regarded as external disturbance. 

The design of the time-domain controllers such as sclf-tun- 
ins or mtwicl reference adaptive controllers is not only complex, 

Figun: 1. RF system representing caviIy tuning loops. 
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but the hardware implementation turns out to be more cumber- 
some. A controller based on variable structure principle such as 
the sliding mode has all the good features of the adaptive con- 
trollers, and the algorithm is not difficult to implement. The 
controller we have discussed needs information about the 
description of the tmnsfer function model in terms of time, t, in 
linear state space form with variables (4, _b, _C, D} as system 
matrices, ui (I) the control signal, y (1) the output signal, and 
LF (I) the state variable matrix as follows: 

“(1) = 4x(1) t&(r) 
y(r) = Q(t) +nui(r) I (1) 

However, it is not very difficult to obtain system matrices once 
the frequency response characteristic is measured. Several tcch- 
niques are shown in Reference 3. Since the controller is inhcr- 
ently insensitive to disturbance and to parameter variation - 
unlike the classical PID, phase lag, phase lead and state fced- 
back - we expect to achieve good performance whe.n the beam 
is injected in the machine. At the end of this paper a schematic 
layout of an analogue implementation is shown which can be 
interfaced to Figure 1 to the output of the function generator. 

Il. SYSTEM MODEL 
The cavity tuning model shown in Rcfercncc 3 for Figure 1 

was obtained in z-domain and was of the 7th order. It was then 
converted to continuous time-domain state-space form of the 
type shown in Equation I by using a sampling period of 10~s 
which was used at the time of measurement. Since WC observed 
some pole-zero cancellation in the 7th order model of the sys- 
tem, we used the standard model order reduction routines of 
Reference 4 by looking at the wcightage on the Gramian vec- 
tors. Finally, we arrived at a 3rd order state space model. To 
check the validity of the 3rd order model a step response of the 
7th order discrete domain transfer function model was com- 
pared with the reduced 3rd order continuous domain state space 
model. The agreement was found to be very good. Hence the 
controller with a reduced 3rd order model was designed. 

III. SLIDING-MODE CONTROLLER DESIGN 
The system Equation 1 can be rewritten with the individual 

elements and is shown in Equations 2 and 3 below. 
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The variables xi, xZ and x3 arc time varying functions called 
lntcmal states of the system. In our cavity tuning problem they 
can be estimated. A brief discussion of this is given later. These 
cslimated states arc used in the controller to obtain the control 
signal. The control signal Ui can be assumed to have two inputs, 
u and AU,, where u is the signal generated by the controller and 
&!ud the input disturbance: 

u,(r) = u(r) +Aud(r) 1 (4) 

Using the estimated states a time dependent sliding variable S is 
dcftncd as follows: 

s = [& &?, 85] :: 

=gTx . 
!1 X3 

(5) 

The components g,, g, and g, of the matrix gT are assumed to 
bc known at this stage. However, later in this paper we discuss 
briefly a method to calculate them. To design a stable feedback 
loop WC need to choose a suitable, positive definite Lyapunov 
function. In this particular case we can use the function as 

V(r) = ;s2 . (6) 

For global stability the Lyapunov function, V, must be positive 
dciinitc, and its first derivative, Q, must be less than zero. In 
other words, 

ss<o , (7) 
whcrc .? is the time-derivative of Equation 5 and is given by 

.< = gT { 44 + & (u + Aud) } 

= gTk, p2 ~3]1:+g%(~+Au,) 

= [a, a2 aA 1: +P(u+AuJ , (8) 

with ;1 

“,= iJ P2= !I$ g3j$ ;;j;;,2;;, 

WC can split the parameters, a,, a2, a3, and I3 into the nominal 
paramctcrs, alo, [x2’, aso, and l3” and unknown parameters, 
Aa,, Aa,, Aa,, and Afl as follows: 

ai = aio+Aai 
I i = 1,2,3 

p = b”+Afi . (10) 

The nominal parameters were calculated using the measured 
system matrices { 4, h} and the matrix gT of the controller. The 
unknown parameters arc associated with the amount of system 
unccrtaintics excluding the disturbance signal Also, let the con- 
trol law, U, calculated by the controller, be divided into two 
parts: the continuous part, uc, and the switching part, us. The 

continuous part will hold the tuning phase error zero under ideal 
plant conditions; at the same time the switching part will drive 
the phase error zero whenever there is uncertainty. Thus 

u = uc+us . (11) 

The control signals uc and us arc designed such that the 
Lyapunov stability condition dictated by Equation 7 is satisfied 
under the normal operating conditions. Also the control signals 
must not exceed the upper limits set by the bias regulator. Since 
uc is used as the control function for the continuous part, we can 
group all the nominal parameters as follows: 

UC = -& 2 aiOxi . 

Substituting Equations 10, 11 and 12 into Equation 8 and rear- 
ranging, we obtain 

3 
AB 

s = pu,+pAu,+ c (Aai-aaio)xi. 

i=l P 
(13) 

The switching part of the control signal, us, is arranged with 
gains to overcome the uncertainties as follows: 

us = - [k,lXl( + qq + k3p31 + k(J Sk+ . (14) 

The function sgnS in Equation 14 is the signum function which 
has a value either +l or -I when S 2 0 and S < 0, respectively. 
The constants, k,, k, , k,, k,are selected such that Equation 7 is 
always satisfied. Clearly, with the following conditions on the 
gains, we can keep the loop stable if 

ki>sup -!(Aa,-%a.“) 
B P”’ i = 1,2,3 

ko>jAuJ . (15) 

The abbreviation “sup” used in Equation 15 is pronounced as 
“supremum” to represent the maximum value of the function. If 
the system parameters {A, h} were accurately measured and if 
the variation due to temperature or other unknown effects is 
ignored, then the gains k, , k, and k, can be set to zero. Whereas 
the gain k, is still required to handle the input disturbance, Aud, 

when the beam is turned on. The choice of these gains gives dif- 
ferent weightings to the cost of control. Precise values can be set 
by actually working on the system. Also, when the feedback 
gains, k, + k,, are zero in Equation 14, then us is zero. Under 
this condition the control signal is u = uc, obtained by solving 
Equation 12, which appears like a linear state feedback conuol- 
ler. Since this type of controller may give oscillatory control 
signal, a saturation function could be defined in place of sgnS. 
It is defined with a constant 6 such that sgnS = 1 for S > 6, 
sgnS = -1 forS<-6,and sgnS = S/6 for 6>Sr-6. 

IV. ESTIMATION OF THE STATES 
From the previous section we noted that the required con- 

trol signal, u, can be generated by solving Equations 5,11,12, 
and 14. We can do this provided the internal states, x1, x2 and 
x3 are known. In our problem they must be estimated. The state 
estimator is known as the “observer”. We use the output signal, 
y (t) , and the input signal, ui (t) , and obtain a standard Luen- 
berger observer. A simple design technique is discussed by 
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Kailath5. Hence, we simply quote the equation below: 

; = Ai+_bui+~[y-C$] -_mDy -. (16) 
Where, f is the estimated state vector used to calculate the slid- 
ing variable, S, and m is the feedback gain vector. This gain 
vector is obtained from the system parameters, { 4, C} , and an 
arbitrary set of eigcnvalues’. As a rule of thumb, the eigcnval- 
ucs of the observer are chosen such that the observer states con- 
vcrgc to actual values almost 10 times faster than the controller 
cigenvalues corresponding to gl, g2 , and g,. For designing the 
observer we have assumed that the input signal, ui (1) , is mea- 
surable, meaning the disturbance signal, Au,, is accessible. In 
other words, Equation 16 will not estimate the states accurately 
when the beam comes on and hence may give problems, espe- 
cially when the. eigenvalues are chosen close to the controller. 
Further work is underway to overcome the observer defects. 

For overall stability the eigenvalues of the observer and 
controller must be negative. The g matrix for the controller is 
selected by trial and error me&d or by using eigenvalue 
assignment technique shown in Reference 6. In both cases the 
equivalent closed loop system, described by 

$ = ~A-b(gTb)-‘gTAl~ * (17) 

must have negative eigenvalues for stability. Equation 17 is 
obtained by substituting the condition7 .? = 0 in Equation 8 and 
using the resulting expression for the equivalent control signal, 
u‘, in Equation 1. When s’ I 0 one of the eigenvalues of Equa- 
tion 17 is Zen?. Hence, for our system we specify only two 
eigcnvalucs, )c, and X2, and ignore the third. The g matrix is 
then obtained from the following equation: 

gT = gTa (4) , (18) 

where the function a (8) = (r! - II) (A - $), and the matrix, 
qT is equal to the last row of the inverse of the controllability 
bmrix of the system (Equation l), and the symbol T is used to 
signify the tranpose of the matrix. 

V. IMPLEMENTATION AND SIMULATION 
The feedback loop can be implemented, as always, in two 

ways, using analogue or digital circuits. A schematic layout for 
analogue implementation is shown in Figure 2. The controller 
implementation would require a multiplexer to determine the 
sign change in the sliding variable. For digital implementation, 
a DSP chip, TMS32OC30, from Texas Instruments with a 32-bit 
floating point multiplication and accumulation time of 60ns can 
compute the control signal in under 5ps, in real time. 

We have simulated the loop performance with the control- 
ler at 5 ~LS sampling rate in Figure 3, with a step disturbance sig- 
nal of Aud = +O.l V between 5 ms and 10 ms. Various 
parameters are shown in Figure 3. A saturation function with 
S = 1 x lo4 is used in place of sgnS. Clearly the output tran- 
sients are controlled under less than 0.4”. At this stage it is 
recalled that the switching part of the control signal must not be 
made zero; otherwise the output of the system will become 
unbounded. This is because one of the eigenvalues of Equation 
17 is close to zero. Also, the controllability matrix of the system 
is observed to be very close to singularity. Hence all the fecd- 
back parameters must be carefully chosen. 

Figure 2. Analogue implementation of the sliding mode controller 
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Figure 3. (a) Control signal, u , and (b) the phase error sIgnal, y. 
under a step disturbance. Aud = 0.1 V. 

VI. CONCLUSIONS 
We have shown a modem control technique to design a 

robust feedback controller such as the “sliding-mode” starting 
from an experimental “Bode diagram” of the system. We retain 
all the simplicity of the state feedback controller and add robust- 
ness to handle variation in tuning errors due to beam loading or 
other uncertainties on the system. Although the controller is 
robust, a non-robust state estimator may give problems unless 
the eigenvalues are carefully selected. 
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