
INCOHERENT BEAM-BEAM EFFECTS FOR ROUND BEAMS 
IN THE NOVOSIBIRSK PHI-FACTORY PROJECT 

N.S. Dikansky, P.M. Ivanov, D.V. Pestrikov and E.A. Simonov 
Institute of Nuclear Physics, Novosibirsk, B 

1. Introduction. The goal luminosity in the 
Novosibirsk phi-factory project cl.21 is in the range 
1O33 l/cm's and very likely will strongly depend on 
the beam-beam interaction. Quantitatively this 
limitation is described via the threshold value of the 
beam-beam parametera< = eth. Once for phi-factories 
the luminosity L o( <th any effects, which can decrease 
the perturbations of the beam from its the 
counter-moving partner and therefore increase <th, 

becomes very desirable. The preliminary study, which 
has been performed in Refs. [3,41 indicated that from 
this point of view the most favorable can be the 
configuration, where the colliding bunches are round 
and the working point of the ring is placed at the 
linear coupling resonance line vx = vz. 

Recently Ref. [51 indicated the possibility of a 
strong suppression of the beam-beam resonance powers 
for round beams, if the lengths of the colliding 
bunches exceed the value of &he g-function at the 
interaction point (IP) US t fi (so-called hour-glass 
effect) Nevertheless, since the calculations in 
Ref. r5.l in fact were done within the approximation 
ws cc /I3 , they must be confirmed for wider region. 

In this paper the influence of the indicated 
factors on the limitation of the beam-beam parameter c 
is discussed for the weak-strong beam case. 

2. Hour-glass effect. To estimate the influence 
of the hour-glass effect on the beam-beam interaction 
we shall assume Gaussian distributions in colliding 
bunches. The motion of a particle from the weak beam 
can be described by the Hamiltonian: 

If = 3Qo - i , (2.1) 

where Ho is the Hamiltonian of unperturbed 
oscillations, while the Lagrangian 2 describes 
perturbations of these oscillations by fields, which 
are induced by the counter-moving strong beam. 
Assuming for the sake of simplicity one interaction 
point (IP) per turn, for relativistic particles one 
can write 1 in the form 

~=Z~e2~(~+c~)i~exp[jkr-*'u";k~u' ] , 

k2= k2 + k” (2.2) x z 
p(s) is the linear density in the strong bunch: 

p(s) = l/Go‘ . exp 
t 

- s2/ 2c2 
I a ' (2.31 

8 
w.x,z,~ are its r.m.s. sizes. Below we shall describe 
the particle unperturbed oscillations by the 
action-phase variables 161 : 

drl 
(x,zl = (Jf3(s)) 1'2cos (II, + x(s)) x,2* PI = P - ) 

a ds 
s=ct+Ro(P , cp = cposin 3 , 

II (2.4) 

dx . 
-+t=&T %,z ds 

=wv 
0 x,z ’ &,,= WC = oovc , 

” 
0 

= c/R . I 
0 x92 

= (~/,~)/2 , I,, = Ro+~ . 

Here ps = gMc is the momentum of the synchronous 
particle, 2nR0 is the perimeter of the orbit, a is 
compaction factor of the ring, we also assume zero 
dispersion in the interaction region. After the 
transformation, which is generated by eq.(2.4), 3Qo 
takes the form (independent variable %= ct/Ro) 

Ho = ” I + v I + v=r,, (2.5) 

and therefozexall ;hz variations of amplitudes ( Ja I 
are caused by the perturbation P : 

dJ 
a av 

J&= d6=r , 
2R0 

a = x,z ) s 
s Q 

V(J,l),ts '=pc P (2.6) 
s 

The conventional analysis indicates the fundamental 
role of nonlinear resona?$es: 

qxvx+ qzvz+ qcvc = qv = R (2.7) 

for the beam-beam instability (qx,z,c and n are 
integer numbers). In the first approximation of the 
perturbation theory the powers of those resonances are 
determined by Fourier-harmonics of i in phases and 
time: 

L= 1 ie+ ( 3) exp ( i$ - irn9 I , (2.8) s 
;,n q,n 

Since the perturbations of the particle motion will be 
as stronger as higher are the amplitudes 2; n the 

relative importance of various effects can be 
evaluated by the comparison of these values calculated 
for the particular conditions. 

Following this philosophy let us first estimate 
the dependence of powers of betatron resonances: 

qxvx + qzvz = n (2.9) 

on the bunch length C'S of the round counter-moving 
bunch for the synchronous particle. We have to 
calculate the integrals assuming cp = 0 : 

2n 2n 

J 
dti dlCl -iqxr(rx-iq ti 

J 
d19 in0 

v+ = -.--z-Ye z z 
se 

q,n C2nJ2 2n 
s V[J,@,Ss) 

0 0 (2. IO) 

The powers of the betatron resonances land their 
widths) will be then determined by IV;.,l. One can 

rewrite eq.(2.101 in the form 

V = ,.vy; ) (2.12) 
q>n 

where 

v'0'=4& 
q,n 

-k2/;! 
(Jz/~)1’2 e 

1 
(2.13) 

determine the powers of the beam-beam resonances in 
the thin lens approximation (P I( 81, while the factors 

s 
lT 

Y = 2Ro 
I 

d0 ~(20~) exp (2.14) 
s 

itiS+ i(qx+ qz)x(C+Sl 
1 

0 
describe the dependence of those powers on the bunch 
length as well as on the phase advance of betatron 
oscillation on the IR. Below we shall call Y as the 
resonance power suppression factors. Here we used 
wkU+ k a. Since in the vicinity of the (IP) one has 

x,(6) = -v,* + arctg(s/8:1 , (2.16) 

where p* is the value of p-function at the (IP), 
eq.Cl.14) with the Gaussian linear density reads 

co 

Y=2 J du - exp(-2u21 cos[ q,arctg[$ u ) ] , 
c2n)"2 

or, usingm[71 
4,= /qx+ 4J . 

T (x) = cos(q arccosfxll , c, = u//B* ) 
q s 
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Y(t;l = /2/n 
I 

du e 

-co 
once Ts(ll = 1, eq. (2.171 and eq.(2.121 yield the 
result of the thin lens approximation for resonance 
powers of short bunches (Y + 1, < c 1). In the inverse 
case of very long bunches (< >> I), due to 
l-q(O) = (-114 [71, the modulation of betatron phases 
over (IPl becomes too fast and asymptotically does not 
affect the value; of resonance powers: 

Y(<) + C-1) b , r: >> 1 . (2.181 
This result generally disagrees with predicted in the 
paper [Sl exponential decay of Y(c). Nevertheless, 
analytical calculations from [51, which were performed 
in the approximation < CC 1, may indicate that the 
enlargement of the bunches interaction region (IR) and 
the corresponding enhancement of the betatron phase 
advance during the collision can suppress the powers 
of betatron b,eam-beam resonances in some intermediate 
region OS - 13 

The results for some initial values of qb are 
presented in Fig.1. These indicate the significant 
suppression of beam-beam resonances at least in the 
region 2 5 t; d 4 . In wider region the behaviour of Y 
generally depends on qb. From Fig.1 one can see that 
the region of strong suppression is as wider as higher 
is qb. This tendency obviously is caused by the 
increase in the betatron phase advance per lIR1, when 
qb increases. Since eq.(2.17) yields the suppressing 
factor for both one and two dimensional resonances 
this may cause the paradoxical situation, when 
coupling resonances qx-qz < 0 of higher order can be 
suppressed less than the lower order ones, if 

l~xl’l~,l D 1 and lq,l = lqz/ 

3. Synchrobetatron resonances. The deviation of a 
particle in phase cp from the synchronous one generally 
distorts these dependencies. In the bunched beam this 
deviation periodically depends on 19~ with the 
frequency vc and therefore both modifies betatron 
resonances qc = 0 and excites synchrobetatron 
resonances qc f 0. The powers of these resonances can 
be written in the form of eq.(2.12) but with 

2n 

W iq I/r 
Yq (<,q,) = -L e ’ c G(<,qosin eCl , 

c I 2n 
0 

m 

(3.1) 

(3.2) 

C(<,qp) = Gku exp [-2[u - $I’+ i(qx+qZ)arctgl@l] 

4. On the suppression of coherent beam-beam 
instability. The results, which have been discussed in 
previous sections, can be used to predict the behavior 
of coherent beam-beam oscillations. In the simplest 
case, when the rigid bunch model is used to describe 
coherent oscillations, one may directly apply the 
predictions of the weak-strong calculations to the 
strong-strong case [Sl. For instance, this means that 
the amplitudes of longitudinal coherent oscillations 
of bunches becomes of primary importance for the 
strength of coherent beam-beam instability. If they 
are small, which generally corresponds to normal 
conditions, coherent beam-beam resonances will be well 
suppressed in the region VS= R On the contrary, if 
these amplitudes occasionally exceed O‘S, coherent 
beam-beam resonances can reach the nominal values 

Y + 1. cob 
This fact can be very important for those schemes, 
where the realization is expected to be limited by 
coherent beam-beam instabilities, for instance, for 
so-called 4-beams compensated schemes 191 and for 
asymmetric colliders with different perimeters of 
rings [lOI, [Ill. 

5. Computer simulations. To simulate the 
hour-glass effect within the weak-strong beam 
approximation in tracing code the counter moving 
strong beam was replaced by ten equidistantly spaced 
thin lenszs. Then the motion of a particle was traced 
during 10 turns. To avoid the recalculation of arcs 
transformation matrixes describing the synchrotron 
motion of the particle the following mapping procedure 
was used. Just after the transformation from the 
center of one IP to the center of the next initial 
conditions for the particle were recalculated to the 
beginning ofothe interaction region : 

Yin = (s - ;;lj)/2 , .s = Roq , xin= x + pgi, , (5.11 

where x and px are the values after the transformation 
on the arc (the same transformation for vertical 
motion). Then, beam-beam kicks were described bv the 
formulae 
oj= 8, + Y p* 0 * c; = c:13j/p; , j = 1, 2, , 10 , 

4n<( jl 
2 

x. + z”. 

(‘x’*z)j+l =(px,pJj - (X,Zlj ~ 9 J J , 
P, t 20-T 1 

J J 
(x.2) 

j+i = (XAj + cPx’P,ljej , Yj+l=Yj+l j (5.2) 

Before the transformation in the next arc coordinates 
of the particle were recalculated using 

xin= x - p,(s + .J1 j)" (5.3) 

m 

This expression can be easily calculated only for the 
case of the short IR (US CC (3 1, when it yields 

Here e(j) are local beam-beam parameters, which 
satisfy the normalization condition 

Yq (c,‘~,) = ew 
c 

For other regions of parameters (OS = R-1 integrals in 
eq. (3. l), eq.(3.2) should be calculatcjd numerically. 
Dependencies of resonance powers on (3 are shown as 
examples in Figs.2,3,4 and 5. These results indicate 
the suppression of powers only for resonances of 
higher orders and strong dependence of this 
suppression on the amplitudes of synchrotron 
oscillations of the particle. A more close inspection 
of the last dependence (see Fig.6 and 71 shows that in 
the case of interest the perturbations of particles 
with small amplitudes of synchrotron oscillations are 
strongly suppressed, while for particles with high ‘po 
(90 >> crs) the perturbation can reach the nominal*value 
(Y -t 11. This means that in the region (QS = 0 1 the 
influence of beam-beam effects on the life time of the 
beam will be mainly determined by the tails of its 
longitudinal distribution. 

524 

The transportation of particles between IP was 
described by the transformation (for short we write it 
only for horizontal oscillations) cos(nu) 

-sin(nvl/p cos(nv1 

Here P-1 are Gaussian random numbers with the 
dispersion &> = 1 and a zero average value Cc,> L 0, 
Aa=exp(-d&2), where 6x, 6~. 6~ are radiation damping 
decrements between two interaction points. 

In these simulations zero chromaticity and 
dispersion function at the interaction point as well 
as real radiation damping decrements were used. The 
working point (VX.UZ) was chosen on the main coupling 
resonance near an integer resonance. During the 
tracing the ensemble averaging of the coordinates: 
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a, a and m have been calculated. 
Figs 8 f 11 present the results of numerical 

simulations. The threshold value of <th is decreased 
with the increase in the length of the weak bunch 
(Fig.Sa) and has the maximum *corresponding to the 
length of the strong bunch ~.s/Bo - 1 (Fig.Sbl. With a 
simultaneous variation of the weak and the strong 
bunch lengths the maxi;um threshold value <th lies in 
the length region cs/Bo - 0.2 + 0.4 (Fig.8c). In the 
synchrotron tune range 04YS~O.05 a strong 
diffusion in the betatron phase space occurs only at 
high values of the space charge parameter <th - 0.3 
(Fig.91. Figs 11 present the results of rougQ 
estimates of the longitudinal dynamic aperture As//30 
and, hence, the life time. For a given value of <*the 
maximum amplitude of synchrotron oscillations AS/&J iso6’ 
determined by the condition under which the particle 
in the betatron phase space does not leave the 043 
boundaries of the dynamic aperture 15*crx,z. 

F,or very short bunches in the approximation 
OS <( (30 one could hardly hope for attaining the value 

” 2c 

of E m 0.1 for a space charge parameter due to the 

., 40 - !m 

c 0,) 
h] 3 r~ireitdd ‘/Oh,” ,f 1 d$ 
I~eom leng:h a,,‘& o on:,, weak 

i: <in t. ;s ~~~~~ 10 ‘.I() 
IkOrn 1eng:t1 is .amd, t ally 
~,t,or,g beorn le”k,tl is “(Jr Cli, r FIG 7 Ii-9 :iilr,,c. OS !” /I’! 6 

w,ck 0 ” d sirong bzcn em Ihs i,ut c&=1 
ore var,ed concurrently. o,ib,= aa, 
1,:.-3 03, v,-3 c3 

1034 c. JJz 
i,h 

‘i-. ~4,rTTTr”~- r-;;,’ r.r:pL-- /- -;,i31.r-r-za 
supposed short life time of the beam. In this case the ~oo---T,,~-~,,T--~--~-, 
role of synchrobetatron resonances is very important. ow co, do, OCR (‘1” 

1. 
As a result of energy exchange between the F,g 9 Threshcld “CIIUI o! J L’S 
longitudinal and transverse motions for the particles ;<n;$;;iran t(lni. 1’5 zJ&=@e 
with As t 5.1~s a fast growth of betatron oscillation 
amplitudes is observed when the particles leave the 
boundaries of the dynamic aperture at the level of 
15*cx,z. It is the distribution of these particles 
that determines the-beam life time. With the bunch 
length increase US/PO for E i: 0.2.a monotonous growth 
of the longitudinal aperture As//30 is observed. It is 
explained by an increasing factor of synchrotron 
resonance suppression. For higher values of the space 
charge parameter c 2 0.3 the influence of betatron 
resonances becoves predominant. Therefore, from beam 
lengths of cs/f30 t 0.8 the diffusion in the betatron 
space is sharply increased. 
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6. Conclusion. On the grounds of the theoretical 
study and computer simulation the following conclusion 
can be made : 

At an incoherent interaction of round beams with 
0-s a /36 a power suppression of betatron resonances is 
observed for particles with small longitudinal 
amplitudes AS << OS and an essential reduction of this 
effect for AS ?r 50-s. As a result, the tune-shift 
parameter can achieved ED w 0.2 without a noticeable 
increase in the transverse beam size. A practical 
limit of the tune-shift parameter may be at a level of 
50 y 0.1 + 0.2 due to a strong decrease in the beam 
life time (T 5 100 sl. 
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