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S(se) being the ellipse surface. 
Introducing new notations 

Transverse and longitudinal emittance growths 
due to synchrotron radiation in long beam transport 71 
lines are calculated using a very simple analytical 

r*(se) = &cp 

method. Results show that these emittance growths XX’(&) 
can be minimized when some particular optical con- a*(&> = -4 s,T 

ditions are fulfilled. 
X2(h) 

INTRODUCTION P*(G) = - s/r 

As they travel along a beam line containing many 
bending magnets electrons lose energy in the form of with /T-y* - a’2 = 1, Eq.(2) becomes 

synchrotron radiation. This ra.diation may be very 
import,ant at high energy and degrade st,rongly the 
beam qualities (transverse and longitudinal emittan- 
ces) because the energy loss of each particle differs 
from the average as a consequence of statistical fluc- or in matrix form 

tuations in the number and energy of the emitted 
photons. 

-(‘(&)X2 + 2a”(s,)xs’ + p+(Se)x’2 = y (4) 

In order to describe the behavior of the phase 
space ellipses in beam lines which have not necessar- 
ily a periodic structure and where the input beam 
is not necessarily matched to the Twiss ellipses, we 
present here a very simple analytical . . ..thod based 
on a statistical point of view (rms emittance). 

Such a method has been previously used in other 
similar works for calculating transverse emittance 
growth [1],[2],[3]. 

[X,X’]+,) [ $1 = 1 

with the following definition of the beam matrix 

a(s,) = S(G) P*(se) 
-4 

-a’(se) 
K -@‘(Se) -Y’(h) 1 

I-- -------l 

= 4 X2(4 

I 

XX’(s,) 
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(3) 

In addition, it will be shown that some pertur- XX’(&) X,2( se) I 
bat,ions of the output beam may be minimized by a It follows evidently that 
proper choice of the beam line optical properties. 

TRANSVERSE MOTION S(se) 2 
det u(s~) = - 

(6) 

Let, us describe a collection of electrons in a 
(X, X’) phase space, where for each particle 

[ 1 iT 
x=x--2 x’ = x’ - 5’ (1) 

2, x’ being the betatron coordinates, and the symbol 
Z denotes an average over the particles. 

Let us consider an arc with si,sf the azimuths 
at its entrance and its exit, and s, a given azimuth 
where a photon emission arises. 

The RMS ellipse associated with the collection 
of electrons at the azimuth s, is defined by 

In the absence of synchrotron radiation perturbation, 
the u matrix at azimuth sf is related to that at s, 

by 
U(Sf) = T(Sf +-- S,)U(S$(Sf - se) (8) 

where T is the transfer matrix between s, and SJ, 

and ? its transpose. 
When an electron emits a photon of energy 

E > 0 at azimuth se, the local change of the betatron 
coordinates implies 

x’ys,) x2 - XX’(&) XX’ + X2(&) x’2 

6X(%) = D(s& 6X’(&) = D’(s& (9) 

D and D’ being the dispersion function and its deriva- 
tive. 

Since to first order the emission mecanism is in- 
dependent of the electron location, we can consider, 
neglecting the energy spread, that each electron ra- 
diates fi photons of mean energy F by unit of time. 
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Therefore the resulting beam matrix perturbation an emittance :(si) = [det u(si)]1’2, the phase space 
over an interval ds, = cdt is ellipse at the arc exit is determined by 

- 
ti E2 

da(se) = 4csdse D2(se> D(se>D’(se) D(se)D’(se) D’2(4 I 
(10) 

Since the elementary perturbation du(s,) can be trans- 
port,ed as u(se), the total change of the u matrix at 
sf is 

J 31 
Ac(sr) = 

du(se) - 
T(sf + se)- T(sf + se)& 

J, 
ds 

e 
(11) \ , 

relation which can be written in a more practical 
form. 

Indeed, by solving the equation of motion by the 
const,ant variation method, one has 

1 1 D cSe) _ T(s, + s, D’(se) t (12) 
with 

[ ;)ry = [a,;::;;,i:: ;;g::;y (13) 

3, 

Therefore 

Wse) ;;i E2 

dse 
= 4~-&T(S, +-- Si) 

U2(se) a(se)v(se) T( 
U(Se)V(Se) V2(&) 1 se - Si) (14) 

and 

Au(s,) = T(s, +- si)G(s;, sf)p(s, t si) (15) 

where G(si, sf), depending only on the arc structure, 
is a matrix determinated at the arc entrance and 
equivalent to the total radiat.ive perturbation : 

G(si,sf) = 4 (F)’ [{it’, \$] (1~) 

In this relation, (*) denotes an average over the dipoles 

(*) = & Jdip(*)dSe 

and (y)‘= $zpAO = 1.44 1O-27 $AQ is the 

classical induced energy spread with 

y the Lorentz factor 
p the bending radius in meter 
A0 the turn angle of the arc in radian. 

From eq.(15) it follows that if the input beam 
is characterized by a matrix b(si) corresponding to 

4Sf) = T(Sf + si) [U(SI) + G(si, sf)]p(sf + si) 
(17) 

S 
--(sf) = [det (u(si) + G(si, ~r))]“~ (18) 

In addition to the emittance blow up, synchrotron 
radiation induces a modificat,ion of 2, the center of 
gravity of the distribution. 

At the arc exit, E(s,) is given by 

[ 331 =wftsi~[{ ;}+F{g;}] (19) 
When developing all these expressions, numer- 

ous interesting results arise and emphasize the im- 
portance of the optical properties of the considered 
beam line. 

Without entering here into the details of cal- 
culations (see [4]), th e main results are summarized 
below : 
l Generally, from Eq.(18) v 2 v + ($), 

where (y), is the emittance growth for a zero ini- 
tial emittance. Equality, i.e. the minimum emittance 
growth, only occurs when u(si) is proportional to 
G(si,s,), that means a particular matching of the 
input beam. 
l If now the arc is composed of n identical and achro- 
matic cells with the same transfer matrix A4 so that 
T (Ire = M” = [I], then the phase-space ellipse as- 
sociated with the radiative perturbation (y)c is 
matched to the Twiss ellipse of the cell at the arc 
exit. In this case, (y), is given by the classical 
formula 

= 1.44 1O-27 $AQ(.H) (20) 

where 

P-G=& J $r D2 + (a, D + Pz D’)“] 
are .x 

/JZ, n, being betatron funct,ions derived from the Twiss 
ellipse. 
l If the arc is composed of two symmetrical subsys- 
tems with transfer matrices Ml = Mz = [-I], then 
- - - - 
I = z(si) and I’ = T’(Si), i.e., an initially 
centered beam is also centered at, the arc exit. It is 
due to the fact that all shifts of the center of gravity 
of the distribution are two by two equal and r phase 
spaced. 
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LONGITUDINAL MOTION l if, in addition, the struct,ure is symmetric and 

A similar approach has been developed to inves- isochronouss then 
tigate the effect of synchrotron radiation on longitu- 
dinal emittance [5]. With a collection of electrons in (Tr6) = 0 (26) 
the (!,6) phase space the beam matrix at azimuth sf 
is and therefore, eq.(23) can be reduced to the following 

ah) =J [ 2 z] C21) expressions = 4 (%)2 [(‘T’6)2) :‘I (27) 

To estimate the perturbation matrix ao(s/), we have 
to calculate the trajectory lengthening at sf due to In this last case, it is interesting to notice that the 
photon emission at s,, having in mind the relations output ellipse is erect (&rlz = 0) and therefore that, 

(9) : the bunch has a minimum length. 

dt! = J s’ w4& It has to be noticed that these analytical re- 

SC P(S) 
sults have been confirmed by numerical computa- 

= ; D(se) .I’ T1l’,“,, ‘“)ds [ J 
tions with the computer code DYNAC developed at LNS [6],[71@1. 

J s’ 
+ me) 

Tl2(S +-- Se)& _ J ” Tl6(s + %) CONCLUSION 

SC P(S) 8.3 P(S) 
ds 1 r The analytic formalism developed above shows 

= ; [qscP51(Sf +- se) that the beam matrix representing synchrotron radi- 

I 
1 

nJlc Jr--IE. - p 
u \“eJL3i!\oJ . ) - T56cS,+ + %)I -e, 

ation perturbations are proportional to (~E/E)’ - 

(22) Y5/P2. 

Averaging over the particles and integrating over 
Therefore, the induced emittance growths in- 

the azimuth s,! one can obtain the trajectory length- 
crease drastically with energy for a given bending 

- radius. 
ening M, or the bunch lengthening char?-terized by 

rr2 
In order to reduce beam degradat,ions while con- 

WY , or more generally the perturbation ma- 
serving reasonable bending radius. our results sug- 
gest that the use of optical st,ructures such as isochro- 

trix nous and symmetric achromats is highly desirable. 
In addition matching of the input beam to the 

Twiss ellipses of the achromat cell is necessary. 
In this case, bunch lengthening is minimized and 

- A (CDT51 + D’Tw - T56)2) - (DTu + D/T52 - T5fj) 
- (DTu + D’Ts2 - Txi) 

(23) I 
I 

And the beam matrix at the arc exit is transverse emittance growth is only governed by the 
(X) function which evidently has to be as small as 

O.(Sf) = oo(s.f) + Aa (24) possible. 

where uo(sf) is the beam matrix in absence of radia- 
tive perturbation. 

In the most general case, synchrotron radiation 
induces therefore a bunch Icngt,hening which is pro- 
portional to the induced energy spread and which is 131 
eventually enhanced by t,he transverse motion (Tai, T52 
terms). PI 

Analysis of eq.(23) shows that this lengthening 
can be minimized when some optical conditions are t51 
fulfilled. For instance : 

l if the structure is achromatic, then, 161 
DTsl + D’Ts2 E 0 (23 [7] 

which means that aa does not depend on trans- 181 
verse motion. 
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