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Abstract 

We present, in this paper, a new method for 
calculating the wake potential of a bunched beam of 
arbitrary charge distribution, directly from the wake 
potential of a shorter bunch, by using orthogonal 
polynomial expansions. Combined with the table-look-up 
technique, this method leads to an effective computation 
scheme for repetitive evaluation of wake potentials of 
different charge distributions under the same boundary 
conditions. 

I. INTRODUCTION 

Theoretically, the wake potential of a bunched beam 
of arbitrary charge distribution can be calculated by using 
the wake function of a point charge as a Green function 
[l]. In reality, except for a few very simplified geometries, 
the wake function of a point charge is impossible to 
obtain analytically. More difficulties emerge when one 
t,ries to compute the wake funct’ion (delta function wake) 
numerically, because of the singularity in the time domain 
and the infinite number of resonances in the frequency 
domain. Although several approximations in the time 
domain have been proposed [2,3,4], it is not clear that 
these approximations can give satisfactory results for all 
cases. 

The difficulty of evaluating the wake function of a 
point charge is avoided by computing the wake potential 
of a nonsingular charge distribution of extended dimension. 
A number of computer programs have been developed for 
calculating the wake potentials of charged-particle bunches 
in various geometries [5,6,7]. Nonetheless, even with the 
most advanced computers, a wake potential calculation 
still requires a significant amount of computer time. Hence, 
it, is not practical to use these programs to calculate wake 
pot,entials repeatedly in a simulation program for beam 
stability or beam-beam interaction in accelerators. A 
conventional method for a fast computation is to calculate 
t,he effective impedance in the frequency domain from 
the resonant modes of a structure, and then to Fourier- 
transform the results to the time domain [8]. Clearly, to 
use this method, one must know the modes up to very 
high frequencies. It is important to know the impedance 
of a structure before it is built; therefore one has to 
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depend on the results from computations. In attempting 
to calculate the impedance numerically, one faces the 
same difficulties mentioned earlier. Trying to “unfold” 
the effective impedance of a bunch of finite length does 
not work in practice because of the extremely large weight 
factors where the effective impedance is small; e.g., for 
a Gaussian distribution, one would have to multiply the 
effective impedance with t,he weight factor exp(+w2g2). 
Thus, a better scheme for rapid computation of wake 
potentials is required. 

As will be discussed below, orthogonal polynomial 
expansions enable the wake potential of a bunch with 
arbitrary distribution to be calculated directly from a 
known wake potential of a short bunch. This method is 
similar to the Green function method; for any specific 
geometry, one needs to compute the wake potential of a 
short bunch only once. The wake potentials of each term 
in the expansion then can be obtained by (numerical) 
integrations. One may construct tables from the results 
and use the “table-look-up” technique [8] to increase the 
computation speed. 

II. EXPANSIONS OF WAKE POTENTIALS 

It is known that the wake function of a point, charge 
G(z,z’) can be used as a Green function to calculate 
the wake potential WF(Z) of a bunch with a charge 
distribution F(t). If the wake function is a function 
of the difference of I and +’ only, as in the case of an 
infinitely long beam pipe with open boundary conditions, 
the relation among WF(E), G(z,z’) and F(z) can be 
written as 

J 
CQ WF(Z) = G(x - z')F(d)dd --co M = J G(d)F(z - cd)& , (1) --co 

where it is understood that G(y) E 0 for y < 0. In this 
paper we shall limit our discussions to the case for which 
Eq.(l) holds. One can infer from Eq.(l) that if &>(I) is the 
wake potential of a known function g(z), and if a charge 
distribution F(y) can be expressed as a convolution of g(z) 
and some function f(z), i.e., 

ml) = r f(~)dY - +Pz 1 
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then one can calculate the wake potential WF(Y) of the where uz = u2 - 0:. Substituting Eq. (9) into Eq. (8) 
distribution F(y) by using the relation yields the wake potential of the (arbitrary) distribution F: 

O5 IvF(y) = J wg (t)f(Y - w ! (3) 
-cc 

where 

O3 CV,(t) = 
J 

G(x’)g(t - x’)dx’ . (4 
--M 

Our study here will be focused on those cases in which g(z) 
is a simple function and in which the solutions of Eq.(2) 
exist for a given F(y). 

For an arbitrary distribution F(y), it is usually 
impossible to find a closed form for the solution, but one 
can expand it [9] ’ t m o orthogonal polynomials O,(y), i.e., 

F(y) = C(Y) 2 %zOn(Y) = 2 %‘%(Yl) 1 (5) 
n=O n=O 

where S,,(y) = C(y)O,(y). The computing of the wake 

we use the 

potential IVY 

to express 

is then transformed into finding the wake 
potential due to the functions S,(y). To relate the right- 
hand side of Eq.(5) to the known function g(z), 
convolution theorem of Fourier transformation 
Sri(Y) as 

Sri(Y) = J m Qn(x)dy - x)dx > -02 
where Qn(t) is given by 

Qn(x) = & 11 $f$e’“‘du , 

wF(x) = d5ic12 n=O n -IF2 (fy 

x Jrn wg(t)“n(z) exp[-w]dl 
-cc 

(10) 
where 

wt) = Au, -rn 

- Jm G(z’)exp[-(t i0y”2]dx’ , (11) 

is the wake potential of a bunch having a Gaussian charge 
distribution of standard deviation u1 < 0. Eq.(lO) has 
recently been applied to build the wake potential tables in 
a beam stability simulation program [12]. 

shorter Gaussian bunch, as [13] 

When F(x) is a Gaussian function, then the 
expansion coefficients a, = 0 (except when n = 0). 
Equation (10) th en leads to the well-known result that, 
the wake potential of the longer Gaussian bunch can be 
expressed as a superposition of the wake potential of the 

(6) 
We note again that the expansion of wake potential 

in terms of Hermite polynomials has been used in the beam 
stability simulation in conjunction with some point-charge 

(7) Green functions or impedances [8,14,15]. The method 
described here differs from previous ones in that it uses 
the known wake potential of a Gaussian bunch instead of 
the Green function or impedance (which are in general 
difficult to obtain). 

where S,(w) and i(’ ) r~ are the Fourier transforms of S,(y) 
and g(y), respectively. Substituting Eq.(6) into Eq.(5); 
using Eqs.(2), (3) and (4), we derive 

We- = fJ an Jm Q,(y - t>w,(tW (8) n=O --OO 
III. EVALUATION OF SPECIFIC CASES 

We now consider some specific cases, using the results 
described in the previous section. 

A. g(y) is a Gaussian Distribution[lOTll] 

In this case, it is advantageous to expand the 
function F(y) into Hermite polynomials, thus C(y) = 
(au)-’ exp -y”/(202)], O,(Y) = H,[Y/(&)] and 

g(y) = ( JL 27~)~l exp[-y2/P31. Performing the 
necessary Fourier transformations [ll] leads to 

Qn(xC) = &(i)“fq&) exP(-5) 1 (9) 

B. Distributions F(y) and g(y) have finite 
extents.[ll] 

We consider a special distribution function, 

g(x) = P(x + 1) - Q(x - ww , (13) 

where e(x) is the Heaviside step function and 1 is the 
half length of the short bunch. When F(y) has a finite 
extent of half length L, one can expand it in terms of 
orthogonal polynomials defined on a unit interval, i.e., 
O,(Y) = O,(ylL) for I(ylL)I I 1, and On(y) = 0 
elsewhere. It can be shown, by applying the residue 
theorem, that [lI] 

&n(x) =I$ { 5 Sn [(x/L) - Pm + W/~>] 
m=O 

- es, [(x/L) + w + wI~)1} 
(14) 

I 
k=O I 
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where M is the largest integer for (2M + 1)1 < (L + I), 
K is the largest integer for (2K + 1)1 5 (L - x), and 
S,,(y/L) = C(y/L)O,(y/L) is defined in the same range 
as that of O,,(y/l;). 

As an example, we consider a case in which C(y/L) = 
(Y/L)~- 1, O,(y/L) is the Legendre polynomial Pn(y/L), 
and (L/2) < 1 < (2L/3). Applying Eqs. (8) and (14), we 
find that 

w-~(x)= fg;, Jrn W,(t)B,(x -tpt , (15) 
VI=0 --cc 

where 

I 

(2+4[~,Pn(3:1)+ql+~2)~2K(~2)] 
-n[%1(x1) + fq1+ +Ll(Xd] I 

for 3: > (L - 1) , 

I 

(2 + 4[XlK(Xl) - x3K(x3)] 
B,(x) = -+L1(4 - %1(x3)] ! 

for (l- L) 5 2: 5 (L - I) , 

-(2 + n) [x3P&3) + @(I - 4d%a(x4)] 
+n[Pn4(x3) + Q(l - Q)E44] , 

for 2’5 (1-L) , 
(16) 

= (x - 1)/L. x2 = (x - 31)/L, 13 = (x + 1)/L, 
z: = (x + 31)/L, and 

Ngt) = $ J-m G(x’)[B(t-x’+l)-6(t-x’-l)]dx’ (17) 
co 

is the wake potential due to the short pulse of 
“rectangular” distribution. 

IV. CONCLUSIONS 

For any boundary conditions for which one can 
obt.ain the wake potential of a short bunch, Eqs.(3)-(8) 
allow us to calculate the wake potential of a longer bunch 
with arbitrary charge distribution. Compared with other 
methods. the method presented here has the advantages of 
better accuracy and higher efficiency. One needs to use the 
time-consuming wake potential programs only once and to 
apply the results to any other distribution function. This 
feature is especially useful in a beam stability or beam- 
beam interaction simulation, because the computing speed 
can be increased by using this method in conjunct,ion with 
the table-look-up technique. 
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