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Abstract 

A multiple beam system is a potentially 
important means of generating, accelerating, and 
transporting high-brightness beams. In this work, 
general expressions for the root-mean+quare emittance 
of a multiple beam system are derived. Of practical 
interest are arrays of identical beamlets. The emittance 
for rectangular and circular arrays are analyzed and 
expressed in terms of quantities associated with the 
individual beamlet distribution and the array geometry. 

I. INTRODUCTION 

The concept of a multiple beam system shows 
promise for several applications. High current beams 
can be realieed by combining several beamlets [1,2] that 
are individually produced, accelerated and transported. 
Also, several new cathode concepts for the production of 
high current beams with reduced modulation 
requirements are based on arrays of micro-sized electron 
sources [3,4]. An important concern in such multiple 
beam systems is the beam emittance. In this letter, a 
general expression for the root-mean+quare (rms) 
emittance is unambiguously derived. It is found that 
the emittance can be expressed in terms of the 
individual beamlet distribution and the array geometry. 
The results are applied to rectangular and circular 
arrays. 

II. RMS EMITTANCE FOR MANY BEAMS 

The rms emittance in x-z trace space is defined 
as 

cx = k[<z2><za>-<zzr>Zj1/2 0) 

where z’ is the gradient of a particle trajectory given by 
2 ‘= dz/dt=p,/p,. The value k=l, proposed by Lawson 
[5] to designate the rms emittance, will be used 
throughout this letter. The squared rms emittance 
(SRE) can be written from Eq. (1) in determinant form 
as 

62 = I 
CZ2> <22’> 
<x2 ‘> <2’2> I (2) 
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were the subscript x on 6 is omitted for brevity. 
Considering a multiple beamlet system, the averaging 
integral of any quantity cp can be expressed as the sum 
of the individual averaging integrals as 

<rp>s&$p* (3) 

where Ii=/piddx’ and the summation is performed over 
the total number of beamlets, i=l to N. Using Eq. (3) 
for each element in Eq. (2) results in the SRE for the 
multiple beamlet system as 

I 
X<Z2> i Ii 

c2=& Ii< 
I;<22 ‘> iii 

ZZ ‘>iIi kz’2>iIi * (4) 

We now consider a system of beamlets with 
identical distribution functions in trace space. As shown 
in Fig. 1, the quantities for each beamlet are evaluated 
within their own X-X’ coordinate system whereas the 
location of the beamlet centroid is expressed as 
<z>i-<n’>i in the system coordinates. Since all the 
distribution functions are assumed to be the same, we 
note that <cp>=C<q>i/Nand Eq. (4) becomes 
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Figure 1. Trace-space representation of the 8th beamlet. 
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It is noted that the first determinant is the SRE of the 
beam evaluated within its own coordinates X and X’, 
and the second and third determinants are additional 
values due to a nonzero <z>i and <t+>i. It is readily 
shown that, if the individual beam distribution is a 
point source, po=b(X)&X’), the first three determinants 
are all zero and the last determinant may be recognized 
as the SRE of the same beam system, but with 
delta-function distributions for each beamlet. 

It is important to note that Eq. (5) depends on 
the position of the system origin within the overall 
beam. Take for example the case when i=l; the obvious 
choice of <x>=<zL>=O centers the beam on the system 
axis and causes all but the first determinant in Eq. (5) 
to vanish (See Fig. 1). A similar choice of 
Z<z>i=x<zL>i=O for the multiple beamlet system 
would make the expression for the SRE given by Eq. (5) 
unique. This condition will be assumed throughout the 
letter. 

III. SRE FOR A RECTANGULAR ARRAY 

We consider an m by n rectangular array of 
identical beamlets as shown in Fig. 2(a). For a simple 
analysis, it is assumed that the mean diverging angle of 
each beamlet is proportional to its mean position 
according to <z’>i=<z>df (as if all the beamlets are 
diverging out from a focal point, z-f, located 
upstream). The projection of beamlets onto z-z’ space 
is shown in Fig. 2(b). Note that the n rows of beamlets 
in z-y space are superimposed in m distributions along 
the line z&/f in Z-Z ’ space. Thus, the terms involving 
&cp>dN in Eq. (5) are reduced to C<p>j/m and the 
number of rows has no effect either on the trace--space 
quantities <cp> or the total emittance of this array. 

Substituting <zL>i=<z>df into Eq. (5), the 
SRE of the rectangular array becomes 

e2 = h2+<(x’-x/fi2>Gr (6) 

where 6,2=<$><Xa>-<XX’>2 is the SRE for each 
identical beamlet and Gr is a geometrical term given by 

G 
r 

= C<Z>i2 _ a2(m+1) 
m 3(m-1) . (7) 

Note that the term <(X’-X/fiz>, which ii the mean 
square deviation from the dashed line, X)=X/f, in 
Fig. 2(b), is determined by both the focal length f and 
the beamlet distribution po(X,X’), whereas the 
geometrical term Gr is determined only by the array 
parameters. Note also that the geometrical term rapidly 
approaches as/3 as m becomes large. Thus, the SRE of 
the array is almost independent of m for large m. It can 
also be shown that for the m by n array where m is 
even, Eq. (7) remains valid. 
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Figure 2. A rectangular array of identical beamlets. 
(a) An myn (m=n=fi) rectangular array is shown in 
x-y space. (b) The same array shown in x-z’ trace 
space. 

IV. SRE FOR A CIRCULAR ARRAY 

We consider here a circular array in which N 
identical beamleta are distributed in m concentric circles. 
The jth circle has radius rj and number of beamlets nj 
that are evenly spaced around the circle as shown in 
Fig. 5. Inclusion of cylindrically symmetric average 
diverging angles (rj’=dr/dz) in this analysis seems to be 
useful. The projection of the circular array onto z-z’ 
trace space, for which C<z>i=Z<z>>=O’ is shown in 
Fig. 3(b). It should be apparent from Fig. 5 that for 
the lath beamlet in the $h circle, <x>jk=rjcos(Li?Tk/nj) 
and <Z)>jk=rj %os(2~k/nj). Using these relations in 
Eq. (5), one finds 

c2= <x2> 
<xx ‘> ;gz’; + ; ;gj, ;g;; 
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Figure 3. A circular array of identical beamlets. (a) 
Different number of beamlets are evenly distributed on 
each circle. The arrows indicate the divergence of each 
individual beamlel. (b) The same beam system is 

represented in z-z’ space. 

where ~~=~kCOS2(2Tk/71j). 
1 

The first determinant is 
again 60 , the SRE of an individual beamlet, and the 
second and third determinants are additional values 
contributed by the radii of circles and the diverging 
angles of beamlets. The last determinant is again the 
SRE of the same array geometry but with the original 
beamlets replaced by point sources of po=G(X) s(Xl). 

If we again assume an array with linearly 
diverging beamlets where the mean diverging angle of 
each beamlet is proportional to its radial position 

(rj’=rjlfi, Eq. (8) can be reduced to 

~2 = ,02+<(X’-X/f)2>Gc (9) 

where ~02=<$><X~>-<XX~2 is the SRE for each 
identical beamlet and Gc is a geometrical term given by 

Gc=ECajrJ / J - ‘2 IIn. - Cnjrj2/2’Cnj. (10) 

It should be noted that the relation 
aj=~kCos2(2~rk/nj)=nj/2 h as been used which holds for 
nj>3. However, since any beamlets placed at the center 
of the system have zero radius, their contribution to the 
geometrical term is zero, although they must still be 
counted in the denominator of Eq. (10). Thus, one can 
exclude the condition nj>3 for the beamlets placed at 
the center. 

V. CONCLUSIONS 

A general expression for the rms emittance of a multiple 
beam system has been derived. The evaluation of the 
rms emittance depends on the relative position of a 
beam with respect to its coordinate system. Thus, in 
order for the emittance to be uniquely defined, it is 
necessary to impose the condition that the centroid of 
the beam coincides with the origin of its coordinate 
system. The emittance for square and circular arrays of 
identical beamlets have been analyzed and expressed in 
terms of quantities associated with the individual 
beamlet distribution and the array geometry. 
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