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I.INTRODUCTION 

Quadrupole power supply ripple, or synchrotron 
oscillations with non-zero chromaticities, not only causes the 
tunes to oscillate, but also drives time dependent beta function 
waves. Linear lattice modulation is well known to have 
profound effects on the dynamical response to nonlinear 
elements. Studies show that theory and simulation predict 
realistic sensitivities to high order proton beam-beam 
resonances only when modest levels of tune modulation are 
included in the model[l,2]. However, the effect of beta wave 
modulations in parametrically driving nordinearities has not 
been well studied. Is ‘beta modulation” more or less potent 
than tune modulation in destroying stable resonance islands? 
We compare the response of fifth order resonance islands in the 
parameter space of modulation strength and period. The 
integrated picture that results incorporates piecemeal ideas from 
resonance trapping, sideband overlap, and Mathieu analysis [3- 
5]. In a frequency domain analysis, a resonance is characterized 
by two numbers - its order and its island tune, Qr . 

Study of the 2/5 resonance is motivated by the E-778 
experimental setup in the Tevawn[6]. There, the quadratic 
variation of tune with amplitude (detuning) and the resonance 
driving are both second order in the strength of sixteen 
dominant sextupoles[7]. Here, one dimensional motion is 
studied in the lattice of Figure 1, so that a simple theoretical 
description is available with independent first order control 
over i) resonance strength, ii) detuning, iii) beta modulation 
amplitude depth, and iv) tune modulation depth. 
* The fractional betatron tune is close to US, so that fifth 
order islands are driven to first order in decapole strength, b4 . 
* Three identical octupoles drive the dettming to first order in 
their strength, b . Their 60 degree spacing in betatron phase 
removes all first order contributions to phase space distortions. 
* The two modulated quad pairs orthogonally drive a local beta 
error A/.3 at the decapole, and shift the tune by AQ . 

l.I.UNPERTUREiEDEQUATIONS OF MOTION 

The effect of a thin decapole is written as 

Ax’ = - b4 B5’2dee x4 (1) 

where x and x’ are the normalized displacement and angle. 
Linear motion in (x,x+) space is a circle. All beta functions 
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are now implicitly set to nominal values of 1.0 . It is 
convenient to go to action angle coordinates (J,@), where 

x = 6 sin($), x’ = Gcos($) (2) 

Consider linear motion from reference point to decapole, 
nonlinear motion through it, and inverse linear motion back to 
the origin. The net motion is conveniently written as 

HP = -!-- b4 J5/2 [sin(5(9 + @de& 
106 

(3) 

- 5sin(3(4 + $dec)) + 10 Sh(@ + $dec)l 

Here i$&c is the phase of the octtipole relative to the 
reference point. The “discrete projection Hamiltonian”, Hp, 
is shorthand for the mefence equations of motion 

A4 = aH, aJ At, AJ = - aH,At 
a+ 

(4) 

where At = 1 is the discrete time step. These equations are 
only good to first order in b4, unlike their counterparts in 
x,x’ coordinates, that are valid for arbitrarily large b4[4]. 

After including the linear motion and octupoles, 5 turn 
motion is represented by another discrete Harniltoni.an, 

Hg = 2x (Q - 5) J + H3(oct) + Hg(dec) (5) 

where the step in (4) is At = 5 . The decapole part in (5) is 

b4 J5i2 i sin(58)-5sin(38)+1Osin(B) Hg(dec) = - 
5oG Rdl 

(6) 

and 8 = $ + &I% + 2n n Qo . Applying the identity 
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Figure 1 The model used for simulation and prediction. 
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N-l 
z(A + nB) = s~sin(A + N$B) (7) 

to (6), with Qo close to 2/S, removes the first and third 
harmonics in t$ . Finally, after a coordinate transformation 

w = +++dec+4xQo (f-3) 

the discrete Hamiltonian takes a simple form 

H5 = 2rr(Qo+J + $J2 + -&- J5n sin(5yr) 
lo& 

(9) 

that is valid to first order in decapole strength, b4. 
The net 5 turn motion described by (9) is small, as 

assumed in the application of (7). so H5 can be thought of as 
a true Hamiltonian. That is, the difference equations (4) are 
well approximated by the classical di&rentiul equations 

2n(Qo++$J+ -&- J3n cos(5yr) (IO) 
4fi 

ar = _- = aHS 
dt my 

- bs J5n sin(5\y) 
2fi 

Figure 2 shows the simulated motion with nominal parameters 
QO = 0.38, b = 0.01, and b4 = 0.0005 . The fmed points at 
the island centers are at an action Jo, given by 

Jo = E($- Qo) = 5.59 

plus a small term of ftrst order in b4 . Differentiating (10) 
with respect to time, expanding relative to a fmed point using 

J=Jg+I (13) 

then dropping ail terms higher than fmst in b4 and assuming 
that I -DC Jo, leads to the representation of the motion by a 
single second order difftxential equation 

!fY! + (2!QPsin (5y) 
dt2 5 

= 0 

The small oscillation “island tune” Qr characterizing the 
resmance in the frequency (tune) domain analysis is given by 

- 6ld.. . I ’ 1 I I” . I 1 __ a 2 \ H’. . --z-2 * 0 A--./ -5 b 74 

0.2 
Norrnal~&d F%~&z (gb/!~) 

1 

Figure 2 phase space portrait showing a fifth order island 
chain, under nominal conditions. 

mm2 = 2 bj b4 Jfp5f2 

Its value in the nominal case defined above is QI = 0.0061, 
typical of those found in the E-778 experiment 

III. PERTURBED EQUATIONS OF MOTION 

Beta or tune modulation at a tune of QM is put into the 
master equations of motion (10) and (11) by substituting 

b4 * b4 + ;Ap cos(2rtQMt) (16) 
or 

Qo * Qo + AQ CO@@Mt) (17) 

Repeating the same procedure gives, for beta modulation, 

Ap cos(25cQMt)l sin (5~) 

= W/5 - Qo> A/3 QM cos(5\y) sin(2xqhlt) (18) 

and for tune modulation 

&!E &QIJ~~, 
dt2 + 5 

= - 4x2 QM AQ sin(2xQMt) (19) 

Equations (18) and (19) differ from (14) in the same way - 
they both include parametric drive terms, on the left hand side 
of the equation, and direct drive terms, on the right hand side. 

IV. SIMULATION RESULTS 

Figure 3 compares simulation and prediction (symbols and 
lines) for the maximum stable beta modulation depth. The 
islands shrink as Ap is slowly increased in the simulation, 
until they vanish. This scan is repeated for many integer 
modulation periods, TM. The resonances appearing near 

!I3 E 
TI = 2 (integer n, TI = WI 1 (20) 

are characteristic of the Mathieu problem of the stability of a 
parametrically driven harmonic oscillator, such as is obtained 
when the direct drive term is dropped from (18) and v is 
assumed to be small. The solid curves are the resonance 
boundaries found from a standard reference[8]. Agreement is 
goodforthe n=l and 3 resonances,butpoorfor n=2, 
where the direct drive is important. UnphysicaUy large depths 
Ap > 0.1 are generally required for instability. 

Figure 4 compares simulated and predicted stability bounds 
for tune modulation. Comparison of (18) and (19) shows that 
the parametric strength AQ/(US - Qo) is analogous to AS, 
so the vertical scales in Figures 3 and 4 represent the same 
range of parametric influence. Comparison also shows that 
tune modulation has a much stronger direct drive term. At the 
same parametric drive strength the direct drive is 

(2(2/5 - Qo) / m2 = 42.9 (21) 
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Figure 3 Maximum stable beta modulation depth versus 
modulation period, Tom simulation and prediction. 
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Figure 4 Maximum stable tune modulation depth versus 
modulation period, from simulation and prediction. 
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Figure 5 Tune modulation stability versus island tune Q1, 
with a constant normalized adiabatic period TN1 = 10, 

times stronger with tune modulation. The extra lines in 
Figure 4, from a previous direct drive analysis[4], are 

The first, (22). is the adiabatic limit for large TM . The 
second, (23). accurately predicts stability between resonances 1 
and 2. Above it, first order synchrobetatron sidebands overlap 
the fundamental. ‘Motion is stable above the third line, (24). 
when many stable sidebands coexist peacefully. 

Figure 5 shows that, with TM/TX = 10, the adiabatic 
boundary (22) is only valid when AQ << (2/S - Qo), the 
distance to the resonance. If AQ > (US - Qo), the resonance 
disappears when the zeroamplitude tune adiabatically crosses 
2/S . The suppression factor of 0.57 at the nominal Qr 
indicated in Figure 5 improves the agreement with simulation 
dam in Figure 4. 

V. CONCLUSIONS 

Modulation of a single quadrupole with an amplitude of 
A&L) causes beta and tune modulations of order 
AP - A(kL) and AQ - A(kL)/4x . If the nearest 
signifkxnt resonance is AQrcJ away, (18) and (19) show that 
parametric drive with tune modulation is about 1/(4xAC&J 
times stronger than with beta modulation In the nominal case 
here this factor is about 5, and it is unlikely to ever be less 
than 1. The direct drive term is AQr&Qr2 times stronger 
with tune modulation. This factor is nominally almost 200, 
and only in pathological situations dots it approach unity. 
Direct drive dominates parametric drive in normal tune 
modulation conditions. Gn all counts, beta modulation is 
much less potent than tune modulation. 

Many thanks to R. Talman and G. Tsironis for their 
valuable comments. 

VI. REFERENCES 

[ll For a review of pappen by many authors, see S. Peggs, R. 
Tabnan, “Nonlinear Problems in Accelerator Physics”, Ann. 
Rev. Trans. Nucl. Sci. 36: 287-325, 1986. 

[21 S. Saritepe, S. Peggs, “Tune Modulated Beam-Beam 
Resonances in the Tevatron”, these proceedings. 

131 A Chao, M. Month, Nucl. Instr. Methods 121, p 129, 1974 
141 S. Peggs, “Hamiltonian Theory of the E778 Experiment”, 

Second ICFA Beam Dynamics Workshop, Lugsno, 1988 
[5] T. Chin, S. Peggs, 0. Tsironis, ‘Tune Modulation, M&eu 

Stability, & the Driven Pendulum”, EPAC, Nice, 1990 
161 A. Chao et al, “Experimental Investigation of Nonlinear 

Dpmia in the Tevatron”, PRL vol 61, p 27S2, DCC 1988 
17) N. Mednga, “A Study of Nonlinear Dynamics in the 

Tevarnm”, Ph.D. Thesis, University of Michigan, 1989 
PI N. Mckchkt, ‘Theory and Application of Msthieu 

Functions”, Oxford University Ress, 1947 

478 

PAC 1991


