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Abstract 

A generalized formalism is used to determine the 
beam ellipse parameters at some location in a transversely 
uncoupled transport line from a sufficient number of beam 
size measurements. We allow for contributions to the beam 
sizes from dispersion which can be either transported from 
some initial point, or generated along the transport line. 
IVe derive expressions for the pure betatron emittance in 
terms of the “effective” emittance (calculated from the 
measurements of the total t,ransverse beam sizes) both in 
the presence and absence of bending magnets. We give nec- 
essary and sufficient conditions for determining the pure 
betatron emittance and show it to be the absolute min- 
imum of the effective emittance. Finally we show that 
dispersion not only directly enlarges the emittance, but 
also causes a g-mismatch, resulting in further emittance 
dilution due to chromatic filamentation, and calculate the 
emittance blow-up due to the combined effect. 

I. MEASUREMENT 

Let us assume a high energy linac or transport line 
and let 0 denote the point where we want to determine the 
beam ellipse from an arbitrary number, N: of beam size 
measurements at locations 1,2,...,N downstream of point 0. 
We assume that t,he transfer matrix elements from point 0 
to points 1,2,...,N are known. Also we allow for contribu- 
t,ions to the beam sizes from dispersion which can be either 
transported from point 0 or generated in between. 

‘The beam matrix CT) can be written, 

u = (XP) ) (1) 

wit,11 S being the vector, 

(2) 

where we have rest,ricted ourselves to the r-plane and en- 
ergy degrees of freedom. The average is over the beam 
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phase space. The beam matrix propagates from point 0 to 
point i according to the equation: 

(# = &O(Ri)T i = 1, 2, . . . . N (3) 

where Ri is the transfer matrix from 0 to i. We also define 
the transfer matrix from i to j as R”j for lat,er use. For a 
transversely uncoupled transport line and in the absence 
of acceleration, the relevant part of the above equation is 
explicitly, in TRANSPORT [l] notation, 

(zz;; $ s,)(;j= ($ i; ql) 

In particular the square of the width of the beam is: 

a;1 = (Rf,)2a;l + (R&)‘& + 2Rf,Rf,& + 

2Rf,R&& + 2Rf,Ri,,u;, + (Ri,,)2d& , (5) 

or in matrix notation 

Uil’ L;u; , (6) 

where uz is the 6-component vector 

0 0: = (a:,, &, &> C]cj, & 46). (7) 

If the elements of the t,ransfer matrix vnry sufficiently from 
point to point, then for IL’ = 6, L is invertible and one can 
determine the beam ellipse at point 0, 

uf = (L-l);& (8) 
(If 1v > 6 the parameters are overdetermined but they can 
be solved for in a least squares fit.) 

The elements of the beam matrix can be generally 
parametrized in terms of the Twiss parameters PO, cyo, yo 
and the dispersion function 70, 

uyl = q?Po + d(~2) 

42 = ‘PYO + o&i2) 
uy2 = -fpao + 770116(b2) 

46 = llo(S2) 

Gs = dV2) 
u& = V2) > 

(9) 

PAC 1991



where 00 = -l/2 /36 and PO70 = 1 + CI~. The “effective” 
transverse emittance in terms of the total beam matrix 
elements is 

0 E”; = lJ,,u;2 - (fly,,” ) (10) 

which is given in terms of the pure betatron emittance by 

PI 
z; = c; + EP 

17; + (Pod + ao90j2 (62) 

PO 
(11) 

Since 70, r& and (6’) can be determined from eq. (8), one 
can separate out the pure transverse betatron emittance 
6~. It is evident that this separation is made possible by 
the presence of bends, i. e. a known, non-trivial Rf6. On 
the other hand if Ri6 = 0, the above equations reduce to 
the usual 3-component formalism [3] in which only ?e (and 
not 6~) can be determined. 

The general conditions on Rrs to achieve the separation 
of the pure betatron contribution to the emittance will now 
be specified. If 0 is a reference point of the transport line, 
let b be a downstream point, upstream of which there is 
at least one bend of known strength, and downstream of 
which there are no bends at least as far as measurement 
location i. Then 

RI = Rib Rb + Rib Rb 
16 11 16 12 26 t 

and the RI6 dependent terms in eq. (5) become, 

2h$#&& + Rf&!,) + (&j)2&, = 

2(R;;R;6 + R”;;R;,) 

x[R;:<R;,vo + Rb127& + ;f&,) 

+f$(R;,vo + Ri2v; + ;R&)](@) . (12) 

The two independent combinations of the three unknowns 
in the above expression, 

(R:17]0 + R;,v~ + i~;~)(fi~) for k = 1,2 , (13) 

can be determined given two measurements separated by 
sufficient phase advance. The presence of an additional 
bending magnet downstream of i, followed by at least one 
additional measurement is then necessary and sufficient 
to separately determine (h2). Thus at least two bending 
magnets and three measurements downstream of the first, 
wit,h at least one measurement between the two bends, 
are required to fully determine the pure betatron emit- 
tance. This condition applies equally to the situation 
where quadrupole strengths are varied to provide phase 
shifts that allow the sampling of different phases in the 
beam from observations in fewer locations. However one 
could use only one bending magnet if quadrupoles both 
upstream and downstream of it are varied simultaneously 
[4], or if the bending magnet itself is varied. 

II. EMITTANCE 

It is interesting to calculate the 
throughout the region in which the 
taken, 

effective emittance 
measurements are 

> (14) 

in terms of the total dispersion function which includes 
contributions from propagation of T]O and 776, and any 
bends present in the beam line; namely 

vi = Rllqo + R12d + R16 , 

7: = R21710 + R22d + R26 (15) 

The effective emittance at point i is then given by the same 
form as eq. (11) 

-2 __ = 1 + 17: + (PiV: + ai%) 
ti 

EP2 cpPi 
V2) ’ (16) 

which can be different for different locations in the trans- 
port line. 

Suppose now that there are no bends between point 0 
and point i, therefore dispersion is not generated between 
0 and i. However 70 and r$ can propagate downstream 
from point 0. Going back to eqs (15), Q and ‘71 at point i 
are now given by the relations 

vi = RIIVO + Rd, > 

7: = R21170 + R224 . (17) 

Also transforming the Twiss parameters back to point 0 

[51 we get, 
Zi = EIO , (18) 

i. e. ? is independent of position along the beam line. 
Although qi and 7: are now different from those in eqs (15), 
the combination [~~+(,f3i~: +aiqi)“]/@i in eq. (16) remains 
invariant (an example of the Courant-Snyder invariant). 
With the use of orthogonal dispersion controls, each of the 
two terms in the sum, 11 and (pq’ + cq), can be separately 
zeroed and so one arrives at the absolute minimum of the 
eflective emittance, ~0. The solid line of the top plots of 
fig. 1 show the variation of the effective emittance 6) with 
~0 and 76. SLAC linac parameters have been used as an 
example. 

III. FILAMENTATION 

In addit,ion to the cffrct.ive etnittance Z t.here is an 
q-dependent effective P-function fi> such that 

Cl1 = 23 , 

fl12 = -ccr , (19) 

which is shown pictorially in fig. 2. The phase space is thus 
mismatched with respect to that described by 9, against 
which b may be said to ‘beat.’ The invariant fractional 
P-beat amplitude ]]A,0/@]], in terms of which 

fi/P = IlA~/~ll~os @A$ + ~o)+(~+IIAP/PII’)“~ , (20) 
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and 

5 - @lPb = IIAPlPll sin PA4 + $01 , (21) 

where A+ is the betatron phase advance, is then closely 
related to the emittance increase 

(22) 

where ?/cp is given by eq. (11). Its dependence on ~0 and 
76 is shown in the bottom plots in fig. 1. For small values 
it is seen to be of second order in [$ + (0~’ + a~)2]/,&~. 

If the beam with incoming effective emittance TO and the 
associated P-mismatch travels through a periodic focusing 
lattice, the phase space filaments due to chromatic phase 
decoherence and a new effective emittance F, given by [6] 

(23) 

is reached. Using eq. (22) the total emittance growth is 
(lo all orders) 

= 
E 

-=1+5 15102 + (Pod + ao770>2 @2) . 

EP fPP0 
(24) 

The dashed lines of the top plots of fig. 1 show the varia- 
tion of F as a function of ~0 and ~6. Since the P-mismatch 
is of second order, the lowest order total emittance growth 
is still given by eq. (11). 
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Figure 1: (Top) The SLAC Linear Collider (SLC) effec- 
tive normalized emittance immediately after re-injection 
into the linac (solid), and after sufficient phase advance 
for chromatic filamentation of the associated P-mismatch 
to have taken place (dashed); p N 3 m, cr N 0, ep ~7000 
pm-prad, and Elrnc 2 = 2300. (Bottom) The P-mismatch 
factor for the same parameter values. 
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Figure 2: The betatron phase ellipse (dashes) in normal 
coordinates 2 = x/d , 2’ = (pz’ + QZ)/fl is effectively 
increased in area and distorted by dispersion. The series of 
dotted circles correspond to different energies /El < (62)‘/2 
and the solid ellipse represents the effective phase space in 
eq. (19). The large circle, with a radius equal to the aver- 
age of the major and minor semi-axes of the solid ellipse, 
then corresponds to the equivalent filamented phase space 
given by eq. (24). 
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