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Abstract

A qualitative consideration of the impedance caused
by the synchrotron radiation is given. The rigorous results
suelt as the value of the threshold frequency and the maxi-
i value of the impedance arve obtained in a simple way.

[.  INTRODUCTION

The problem of the synchrotron radiation of a charge
in a conductive vacuwm chamber has been considered many
tines, see references in recent publications [1,2,3]. The rig-
orous consideration is based on the exact solution of the
wave equation in a particular geometry (a charge mov-
ing between two conductive planes or in a toroidal cham-
ber) and involves rather cumbersome calculations. Provid-
ing very useful reference models, these solutions call for a
more simple henristie picture of the physics involved which
would clarify the situation, especially in cases where the
exact solution is unknown.

Consider, for example, the results [2] for a charge mov-
ing along a circle with the radius R, in a pillbox cavity
with the radius b and the height A = 2g. The real part
of the impedance is given as a sum of é-functions due to
the excitation of eigen modes of the cavity. The thresh-
old frequenecy w,y, is much higher than the cutoff frequency
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and the maximum value of the impedance
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n
is independent of b, see Appendix. This indicates that
consideration based on the modal analysis 1s superfluous
while the threshold frequency is a result of the intrinsic
properties of the synchrotron radiation in a waveguide,
The threshold frequency may be obtained in the fol-
lowing way. As it is well known, the harmonic n of the syn-
chrotron radiation can be radiated only within the small
angle # with the plane of motion:
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That follows from the intensity of the n-th harmonic of
the svnehirotron radiation [4]of an ultrarelatjvistic particle
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The intensity rolls off exponentially
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in agreement with BEq. (1). The result Eq. (1) is the direct
result of the Lorentz transformation of the dipole radiation
in the moving frame of a particle and is an intrinsic feature
of the synchrotron radiation.

Clonsider now a particle moving in (2, #) plane between
two conductive planes separated by the distance h = 2¢,
The radiated wave propagates between the planes as in a
wavegunide. Usually, this is possible if the wave {requency
w is above the cutoff frequency: k = w/c > w/h. For the
waves with frequencies well above the cutoff frequency the
propagation of the wave may be described in terrus of the
geometric optics with a wave vector k, 1f} =w/c = n3/R.
The boundary conditions on the conductive walls still re-
gnire that the vertical component of the wave vector can-
not be too small:

by, o= k0 >

(4)

The cutofl frequency cortespouds to the angle f ~ 1. For
the harmoanics n >> 1 the angle is restricted by Eq. (1).
Eqs. (1) and (4) give the threshold frequency:
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The synchrotron radiation with n < ng, may be radiated
only with the radiation angle ¢ > n~ Y3 otherwise the
boundary conditions cannot be satisfied. The probability
of such radiation, as has been mentioned above, i1s expo-
nentially small.
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Hence, the single particle synchrotron radiation is ex-
sonentially small (see Eq. (2)) for harmonics n < 1y, and,
as usually, with n > n,.. = 4% Unfortunately, it is al-
ways Ny << fmae, and the decrease of the total radiated
power due to suppression of the radiation with the har-
monics n < ngp 1s small.

The parameters defining the threshold frequency have
to be clarified for more complicated structures such as a
toroidal chamber, where there are several geometrie dimen-
sions (the height and the width of the chamber). With a
good accuracy the polarization of the synchrotron radia-
tion is such that the vector of the electric field is in the
plane of motion (intensity of this polarization is 7/8 of
the total intensity [4]). Therefore, only the height of the
chamber enters in the boundary conditions for the tangen-
tial component of the electric field and in the threshold
frequency.

It is worthwhile to consider the radiation length of the
mode n. As usual, the radiation length or the length of the
formation of the radiation can be defined as the length L
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where the phase of the radiation remains small: |k L —
wi} < 7. Using & = (n/R)cos @, and Eq. (3) we obtain:

L = 2rRn~ Y3 = 2V7hR . (6)

The length L is small, L << R. Hence, the results ob-
tained for a periodic motion on a circle with the radius R
arc valid also for an aperiodic motion or a periodic motion
along a complicated trajectory with R being a local radius
provided R >> L ~ VvhR.

It should be noted that the parameter wg = ¢/R has a
meaning of a fundamental frequency of oscillations. Thus,
the same effect of suppression of the radiation below a
threshoeld frequency can be expected for a dipole oscillating
with frequency wy and propagating in a straight waveguide.

The effect of the finite conductivity can be estimated
comparing the radiation length FEq. (6) with the absorp-
tion length of a wave. The absorption length Lgp, is de-
fined as the length where the intensity of a wave decreases
by a factor of e. It can be estimated from the definition of
a Q-factor of a mode, Loy, = ¢t = ¢/(Qu) with Q = a/é.
Here & is the skin depth, and a is the geometric factor of
the order of the beam pipe aperture. Clearly, the effect of
finite conductivity is small provided L,y >> L.

Let us consider now the coherent radiation of a bunch.
The radiation of a bunch can be coherent if the bunch
length is small compared with the wavelength. For a Gaus-
sian bunch with rms length ¢ that means wo/c < 1 or
n < RJe. Because radiation of the modes n < nyy is
suppressed, the coherent synchrotron radiation is possible
only for very short bunches:
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I1. IMPEDANCE DUE TO SYNCHROTRON RADIATION

The electromagnetic field of the synchrotron radiation
of a particle may change the energy of other particles in a
bunch. The energy variation is described usually in terms
of the wake field or, in the case of two point-like particles
separated by the distance s, in terms of the é- functional
wake field W (s). The last is related to the variation of the
energy of the second particle AF due to interaction with
the tangential to the trajectory component of the field of
the first particle. For a periodic motion in a plane z = 0
on a circle with the radius R, AFE(s) is the variation of
the energy per turn due to the azimuthal harmonic of the

electric field:
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Here 7' = 27f/v = 27 /wg is the revolution period, and
wq/27 is the revolution frequency. The field Ey(r, @, z,1)
1s periodic in time and azimuth:

Wis) =

(8)

li

r’;!‘:

. : .
Eolr,5,6,0) = / 0 e Sz (0
with harmonics
En(l’,:,w)IWOZEn.ué(UJ-“TU/) . (10}
v

Eqs. (8) and (10) define the wake in terims of the harmonics
Ey o (r )
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The longitudinal beam impedance for a periodic motion
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Z(w) = Znpwoblw — nwy) (12)
is the Fourier harmonic of the periodic W(s) = W(s+2717)
wake: i

W(s) = Z% eminwosle (13)
Hence
Ly = ZT—R Enn(R.0) . (14)

Note that Z, 1s the average value of the

Eq. (12):

impedance

, 1 ,
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wo

where n = w/wy and the interval of the averaging is wy.

The azimuthal component of the electric field of a
point-like charge e moving with velocity » on a circle with
the radius R in the (x,y) plane has harmonics
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where p = |[7—7(1)|, |F(t)| = R, and the integration over ¢
is performed on the interval 2.

The harmonic £, ,(R,0) defines the impedance. Sub-
stituting p = QRsin(a), where o = 2(é — wot) we obtain:

sin{2nBsin o — 2na}
sin o '
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(16)
The modes of interest
For such modes the signif-

Here § = v/ec, and Zg = 1207 Ohm.
are the modes | << n << ~%.

icant contribution to the integral is given by na® < 1 so
that o >> 1/v. Eq. (16) takes the form:
w
Z(n . [ na® L .
Re 20 = 20 [adasin (292 = 05813 SN
n 3 n2/s
0
Here we use the following value of the integral:
w
/darw‘l/:‘ sinx = 1.172.
0

) . e
Hence, for very large n the impedance rolls ofl as n=3%/3
For n < ny, 1mpedance is exponentially small. Therelore.
the impedance has maximum value at n = ng,. Eq. (17)

and Eq. (5) give:

L Z(n) N g
Re ——= = 223.3 = O} 3
[ e - Lmr SH Ohm (18)
which is reasonable close to the result obtained by exact
solution [3].
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Let us estimate the effect of the finite transverse size
o, of a bunch. The estimate obtained above is valid if

o2 << 4R?sin®(a) ~ R? n=%/3 .
For n 2~ ny;, that gives a'i << Rh. Otherwise, the estimate
has to be modified taking into account the finite size o .

III. CONCLUSION

The simple approach described the main features of
the synchrotron radiation in a vacuum chamber. That
opens the possibility of consideration of the effect for more
complicated geometries and, hopefully, clarifies the physics
of the problem.
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IV. APPENDIX

The estimate for the maximum value of the impedance
~ 300 £ Ohm
R

w22)

can be obtained from the exact solution obtained in the
paper by Warnock and Morton [2] (see their Eq. (2.47))
for a particle moving in a cylindrical pillbox cavity:

___Z(n) = iWZZOE
n h
2
ap\ " Ju(7pR)
X -} it (750, R Al
; (7}1) Jn(7p0) Pn(1p0: 7 R) (41)
(0dd)
wRY Ji(npR) .
Here h = 2g,

_Tp 2 _ (Y2 2
aP_Q_gl 7p“(:) _ap
and
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The real part of the impedance is given by the zeros of
the denominators. Two terms in Eq. (A1) give equal con-
tribution. Thus, we may consider the first term and double
the answer. Expanding denominators near the resonance
frequencies

w o vp\? mp\ 2
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Ilere v, are the roots of the Bessel function J,(v,) = 0.
The distance between resonances Aw/c ~ (1/b),(w/h)

~

is much smaller than the threshold frequency wy/c

(1/h)\/(R/h). Therefore, the summation may be replaced
by the integration. Introducing the polar coordinates

(w,9)
™ o_ ¥ o _ W
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The main contribution is given by small a« = 7/2 — ¢
| |< (1/n)!2

For b >> R the ratio
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Replacing sin & =~ o and using the integral
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and integrating over Aw << w we obtain finally:

Re Z(n) T Z,

n 61/3 n2/3 -

Hence, the real part of the impedance rolls off as n=2/3 for
large n. The maximum value is reached at the threshold
ngp, given by Eq. (5). That gives

Z(

Re 20 _ 968 £ Ohm .
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