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INTRODUCTION

An expression for the high-frequency limit of the longi-
tudinal coupling impedance for a structure consisting of
a large number of cavities (cells) has recently been de-
rived [1]. In that calculation the cells were identical, az-
imuthally symmetric, and equally spaced. In the present
paper we extend the analysis to the case where the cells
are grouped into blocks, which themselves are identical
and equally spaced, a geometry frequently encountered in
multi-cavity structures. The space between blocks is mod-
eled as missing cells. Specifically, we consider the picture
in which every (o — 1) cells (which form one block) are fol-
lowed by 3 missing cells. The total number of cells in the
system, both present and missing, is N. The total number
of blocks is M. With the definition ¥y = o — 1+ 3, we write
M = N/~. The separation between the centers of cells is
denoted by L, and the separation between the centers of
blocks by £, £ = vL. From ref. 1, we carry over the as-
sumptions that the cells are well separated from each other,
L > g, where ¢ is the axial extent of one cell, and that
ka®/L > 1. In the latter condition, k is the wavenumber
of radiation, and a the beam pipe radius.

Before embarking on our derivation we show how one can
obtain an approximate answer intuitively by a repeated use
of the results of ref. 1. If the number of cells in one block
is large (y — 8 > 1), then from ref. 1 we can write the
admittance of a single block as

(ZoY (k)]o = (v — B)~" (Fo +

(1)

Ky —08—1tan™!

K.
PNCEYA
Here Fy 1s the admittance of a single cell, K. is a constant
pertaining to one cell,

av/wk/g;

and Zg is the impedance of free space, Zp = 1207 ©2. On
the other hand, if the number of blocks is large (A1 > 1),
then we can write by analogy the admittance of a string
of blocks in the same form as Eq. (1), with Fy replaced by
[ZoY (k)]p and K. replaced by Ky,

Ky = (1 —)a/7k/L = Ke/ 7 - (3)

We have introduced the assumptions that v — § < v (the
blocks are well separated) and that ka®/L > 1, which are

Fo=(1—-37 Ko = (1 —-da/mk/L, (2)
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the analogues of g/L < 1 and ka?/L > 1 for single cells.
Combining the expressions for a single block and a string
of blocks, we get for the total longitudinal impedance of
the system

ZZ(k) = N(1 = 8/7) [Fo + (Ken/2)\/y— B+
0

Ke 177
K (1= 3/v)VNtan™! —— ) (4
kS ( f/’))\/—— Qﬁ:] ( )

This is the same as an approximate result which can be
obtained through a more formal derivation.

DERIVATION AND ANALYSIS

We begin a more systematic derivation by modifying
Eq. (2.11) of ref. 1 to include missing cells. Thus,

n—1 oo B-1
Yn = (1 - Z Cn-—m?}m) (1 - Z Z&t,kw—s) s (5)
m=1 k=1s=0
where ¢, is
(144 [g — _ ,—inLji
o= TXD [ 5 oy (2 )

and j, are the zeroes of Jo(2). The longitudinal impedance
of the system is given by

Z(k) (l+z) [ g
Zy T 97a 12-:1% (

Therefore, our task is to solve Eq. (5) for y,, or their sum
over n, and substitute the result into Eq. {7) to obtain
Z(k). The presence of additional terms, the ones contain-
ing the delta functions in Eq. (5). however, makes this
calculation more difficult than the corresponding one in
ref. 1.

To work on Eq. (5), we let n = jy — r, where j =
1,2,...00,and » =0,1,2,...y—1. Thus the index j labels
blocks, whereas r labels cells within one block. We also in-
troduce a sequence of generating functions w, (h) and their
sum w(h) given by

-1

o] y-1
~(h) = Z WYy w(h) = Z we(h). (8)
j=1 r=0

Now our task can be reformulated as follows: find w(h)
(rather than all 3,’s). A knowledge of this guantity will
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enable us to obtain, under suitable approximations, an ex-
pression for the sum appearing in Eq. (7). Multiplying
Eq. (5) by A7, summing over j, and using 6, gy—s =
8ixbrs and Z“ 1o EJ Zr, o +b550 Zr,_lrﬂ, where

m = j'y — 7', we obtain

51
w, + (1 = Zé”)[z W (Z piv=(r=1") o
s=0

r/=0

-1
Cj'y—(r—r’))+ z u)r(h—(r——r )C(,./_,.)] faund
r'i=r+1

hY—"

Zém 5 (9)

These are v coupled linear algebraic equations for the
quantities w,. As is immediately obvious, the first 3 of
these are 0, i.e. wo = w1 = ... = wg-1 = 0. We are thus
left with & — 1 unknown quantities wg, ..., wy-1, and the
same number of equations which are not identically zero.

Evidently, the number of equations for w, is the same
as the number of cells in a block. In the case where this
number is small the best way to obtain w(h) is to solve
Eqgs. (9) directly, thus avoiding any further approxima-
tions. In many applications, however, it may not be prac-
tical to do this. Hence we now turn to the derivation of an
explicit expression for w(h).

We sum Eqgs. (9) over r to get

-1 v-1
w + Z Z Wy Ay i+
r=8r'=3
y—1 -1 _
h(1 -~ hY=7)
3 > weBrp = et (10)
r=@ri=r+4l (1 - h)(l - l17)
Here
A, = (1+1) oy
a wk
S —iyLj? o1 —ily =)L
1—hYexp(——= X 11
;[ " exp( 2ka’ )] exp] 2ka? L (1)
(1+ z) _ u L]
fr — r s 12
k \/ Zl 2ka? (12)
In Egs. (11, 12) the explicit expression for ¢, given by

Eq. (6) was used. Since we are going toset h >~ 1—1/N, the
assumptions y/N = 1/M < 1. ka®*/L > v, and v - 8 < 7

lead to a simplification of Eq. (11). Then
ivLj?
~ 1A + 2 , 13
VD o [ - 4 I

s=1

which is independent of . We note that the assumption
v — 3 < v has allowed us to neglect the next higher order

correction i A,, even though for small values of 3 that
correction is comparable to 3,. Now the second term on
the left side of Eq. (10) can be written only in terms of w.
To compute B, we convert the sum over s to an integral,
which is valid since ka?/L 3> ~, and set the lower limit to
0. This choice for the lower limit is immaterial, as another
choice of order unity produces only corrections which are
subdominant to the result given below. Thus,

t fg 1
o -y S 14
"T VL (1)
With the introduction of new indices, m’ = y—»', m = v—

7, the third term on the left side of Eq. (10) now becomes

¥-5 m—1
2 E Wy eyt =
Vv o— m’

m=1m’'=1

(15)

To proceed further, we require v — 3 > 1. Eq. (15), with
(1/7)+/g/L factored out, can now be approximated by

oo m—1
1

) (v—0
E : 2 : =m0y ”“L‘y_m/ﬁ o
m=1m’=1 m-m
0

E -m" J(v~8) E e v=8) w o~
yem! =
/ Nz
m’ =1 m'=1
y—43 v 43 1
E uw m! = W E (]6)
. / Nz Z - 1
mi=1 m'=1 mi'=1 m

The first equality sign follows by the convolution theorem.
The third expression, on the other hand, reverses the step
taken in going from Eq. (15) to Eq. {16). It should be
noted, though, that using e~"/(7=%) (o approximate the
finite upper limit in the sum over m (going from Eq. (15)
to Eq. (16)) can introduce a finite error even for arbitrarily
large ¥ — 4. For w, proportional to =2 or to b,—p or
independent of r, which can be inferred from Eq. (17) to be
the case when one of the terms in the denominator i1s much
larger than the other ones, we have verified numerically
that this error is less than 12%. Finally, for simplicity we
replace the sum in the final expression in Eq. (16) by an
integral.

Eq. (10) can now be solved for w(h). Takingh >~ 1-1/N,
so that w(h) simulates Z;'A.; yi  [1], yields

w(l - I/N) = N( l-ﬁ/7 [1 + '2/n Wa/L\/y — B+

IL_}‘
(1= 58/ /\« )Aa-

,1]—1.

(17)

In order to evaluate the sum over s, such that the result
is valid in both limits yA > ka®/L and ka®/L > vM (or
N > ka®/L and ka®/L > N), we use the method of ref. 1.
The result for the impedance is then

ZZU:) = N(1=8/9)[Fo+ (Kn/2)/7 = B+

K(1=3/y)VN —1tan™! —2—1—\\/—_—7{7] -

(18)
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Here both £y and K are given by Bq. (2) (with subscript ¢
on K dropped). Physically, the sccond term in parentheses
in the expression above describes the interference between
cells within one block, whereas the third one describes the
nterference between cells in different blocks.

We exanine Eq. (18) in two limits which are consistent
with the a ;m‘»m\'imation% that M > 1. ka? > £, and 1 €
v — 3« 5. In the limit N <« kd® /l corresponding to
(he case when the diffraction waves from the fxsi and last
blocks are strongly coupled, Eq. (18) gives k1% behavior
for the hinpedance

Z(k) A
20 My = 3)Fo(k)
STy -]
U 72V Iy =81+ VMG = 3] (19)
Now we examine the dependence of the impedance on

blocks and the cells
My — 3) > ~ and

i

parameters.  First, if the
m the sense that

vields

geometrie
are not {ar apart
gy = )L > 1, then Eq. (19)

20k 2o = 2/ MAL[(1 — ymav7k] ™! (20)
Comparing with the impedance expression for a plain cell
‘I"/ ]1 << A'i’I2
structure of cach block is neglected.
11(
well separated (g

.1t can be seen that the detailed

Sceond, if the blocks

) ’{( v, while the cells in cach block are not
— )L D)on

2RV 20 = 2MN\/(y = DL = iiraT

structure at

mmxf

e gets from Bq. (19)

lu his caxe the eells in cacli block are coupled as a plain

cell strueture i the regime (7 — 334 < ka®. However,
the contributions to the impedanes from different blocks
siiply add up because they are far apart. Finally, when
gl ,..;’)/’ L Tand M{y—-3) < v, weare led from Eq. (19)
to
. S — .

ZUk)/ 7 = My = 31/gl(1 — Dmavxh] ™! (22)

Here the impedance is the sun of all single cell

inpedances, due to the fact that all eells and blocks are
well separated.
Similarly, in the lunit NV

{1%)

> ka*/L (and

vL < ka?), one

gets from B
ALV

(1—11 /»)W/I Vr—ad-1) - mA-u?/(«,/,)}"l, (23)
first term in the denominater in Eq. (23) is sim-
When g(nv — 3) > L. the
pedance in B, (23) exhibits =37 helhavior in the region

2~ Ly — ), and behaves as deseribed in IBg. (21)
L/ (5

where the
ply Ao/ Z(k) for asingle block.

for ka- — 3) when the conpling between blocks
15 wenk,
NUMERICAL SIMULATIONS
We have
the result given by Fq. (18) with ]"(;wl

performed numerical simulations to corpare
factored out (that

is, w) with S(N) = Zli] y,. where the y’s are obtained
directly from Eq. (5). The constants ¢,, are evaluated nu-
merically. The upper limit in the sum over s in Eqg. (6)
is chosen such that the maximun argument of the eXpo-
nential is of the order of 47 This limit is in agreement

with the discussion in ref. 2, which identifies the region

where j, ~ (%‘};)“/2’ as contributing most significantly to
the sum. Whereas changes of the order of 1 in the upper
limit do not affect the result appreciably, Eq. (6) becomes
meaningless if s is allowed to take on very large values.
Figure 1 shows the real and imaginary parts of S and
w in the regime where ka®/L > N. Tlm values of 3, 5
and k are 8 = 335, 7 = 350, & = 1.0 x 10°. Figure 2, on
the other hand, shows hat reasona \!0 agreement between
S and w is achieved even wlwn the (‘on(litiun Y -3 €

1s violated. In this case 3 = =10,k = 1.0 x 10°. For
both figures a = L = 1, and g = ()‘1.
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Figure 10 Real and imaginary parts of S and w vs N
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Figure 20 Real and imaginary parts of S and w vs N
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