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Abstract 

We have studied the phase space distribution of beam par- 
ticles near an isolated difference resonance. The numeri- 
cal simulation has shown that the distribution can quickly 
settle down to a final state if its initial state is Gaussian. 
The final state can be treated as a stationary state as long 
as the high order fluctuation can be neglected. From the 
Liouville equation, the emittances of beam particles are 
calculated approximately. There is a good agreement be- 
tween analytical and numerical results. 

with $G,~ 3 4z,y - v,” y0. Since the dependence of I\’ on 
angle variables is only through 2p$, - 2q&,, Z,/(2p) + 
Z,/(2q) is another constant of motion besides I<. 

The behavior of a beam can be described by the phase 
space distribution of particles f(Zz, $, , ZY, &,, O), of which 
the time evolution is governed by the Liouville equ:>t ion3, 

where { } is the Poisson bracket. For the Hamiltonian 
(4), this equation becomes 

1 Introduction 

In the system with two degrees of freedom and time de- 
pendence, an isolated difference resonance does nui lead to 
an instability, i.e.! the motion is always confined in both 1: 
and y directions. ‘s2 For a beam of part,icles, therefore, the 
emittances in two directions are bounded. Due to t,he cou- 
pling, however, the energy could be transferred from one 
direction to the other. As a result, an initially very small 
emitt,ance in one direction could grow to a large value. 
Even though this growth may be acceptable as far as the 
stability is concerned, it could influence the particle distri- 
bution of the beam. 

where 

Consider an isolated difference resonance of the form 

(2P)G - (Q)$ = n + 7 (1) 
where 2p and 2q are positive integers with 2p+2q > 2, n 2 
0 an integer, and IyI < 1. V, and vY are the horizontal and 
vert,ical tunes. In the single resonance approximation, the 
Hamiltonian in terms of the action-angle variables (Z,d) 
can be written as 

is an integrable operator. Since the Liouville ol)(,t,ator 
.C = ;{ZI;, } has only real eigenvalucs,” the solutioii of the 
Liouville equation will not settle into a unique eqiiilil)rium 
state. The final state of the Liouvillc equation depelcls on 
the initial distribution. It is easy to see that the angIl> inde- 
pendent stationary state of Eq.(6) is / = f(Z,/2p+ 1,/2q) 
which is an arbitrary function of i3./2p + I,/2q. C;ince 
Z,/2p + Z,/29 is a constant of motioil, the mean il('l ions, 
which correspond to the emitt,ances ii1 two directiotl\, sat- 
isfy 

In the following, we present a coupled scxt,upole resonance: 
2p = 1, 2q = 2 and n = 2. The treatments is, ho\vc,ver, 
applicable to any p, q and n values. 

II = v,z, + vyzy - ~-I,pl;cos(2p~, - 2q& + n8). (2) 

Using the canonical transformation 

S(&> Jz, 4yr Jy) = (6, - %L + (4, - +vy, (3) 

where V,” y are t,he tunes of the exact resonance, (2p)vi - 
(2q)vi =’ n and v,,~ = ~2,~ + Y~,~, we obtain a “time” 
independent Hamiltonian, 

2 Numerical simulation 

I< = -hZ, + -fy Iy - ~Z,PZyP~042ph - %*,), (4) 

‘Supported by the U.S. Department of Energy under grant DE- 
FG05-87ER40374. 

To understand the evolution of part.icle distribut ioll, we 

have tracked numerically an enscmblo of particles ~II ;I test 
lattice with four sextupoles placed symmetricall!,. De- 

fine L e ,&,, Ey E &J, 11~ E /3,adx/d!), and 

qz F &lidy/dQ. At each sext.npolc, &.,y are uncl~ailged 
but 
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g = {Ii-,f} (5) 

Lf = t{Igz; sWWz - 2rl&)(21& - 2q&) 

+ C42Pfh - %lcIy)(Pl;p-‘q& + qzy;-lg$} .f (6) 

a a a 
L=z+7xa$‘“as, (7) 

(Z,)/2p + (Zy)/2q = const~ant (8) 

Arjz = +;(<z _ E;) 

A% = 2&rEy (9) 

© 1991 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1991



s, 1.3 
x 

5 II: 

h 

x' l.O 

'I; .P 

.8 

.7L-“““‘.““““,“““““‘I 
0 20 40 60 80 100 120 14’2 160 180 200 220 240 260 280 300 

turn 

Figure 1: The evolution of the emittances from the numer- 
ical tracking of 1000 particles, (u) and (b), and from the 
equations of the moments, (c) and (d). The initial state 
is a Gaussian distribution with a, = fly = 0.5 x 10-3mm, 
and SO = 0.05rr~-~, ,!?c = 100~~. In each curve the upper 
branch is (I,)/cr, and the lower one (Iz)/~z. (u) is on the 
resonance with V, = 1.65 and v,, = 1.825. (b) is far away 
from the resonance with V, = 1.70 and vY = 1.65. (c) and 
(d) have the same conditions as (u), but (c) is calculated 
from the map (20) and (d) is calculated from the modified 
version of the map (21) in which Eq.(24) instead of Eq.(13) 
is used. 

where s = so at B = ms and s = -so at 0 = (m + 1/2)~ 
for m 2 0. Between sextupoles, it is a linear rotation 

[ :y, :I;; ] [ $ ] - [ 8:: ] (10) 

where c,,~ = COS(~KV,,,/~) and s,,~ = sin(2xvz,Y/4). The 
Bamiltonian of this system can be written as 

H = ~~=(E?+rll)+~~~(F:+ri:) 

+~soP&w~ - 3M,2> (11) 

where b(6) = S(6) - 6(6 - 4) + 6(6 - T) - E(6 - F). In the 
single resonance approximation, this IIamiltonian can be 
easily reduced to the Hamiltonian (2) with 21,,, = <,j y + 

9 &, and 2p = 1, 2q = 2, n = 2. The initial particle 
distribution of the beam is assumed to be Gaussian 

t:+g t2+92 f(Fzr9z,Eyj9y~O) - exp(-L - y 
20, 

gay 1. (12) 

When the operating point is very close to the resonance 
(Y~,~ << l), it has b een found out that the distribution 
function quickly settles down to a final state. Except for 
the small fluctuation, the mean actions (emittances) in the 
final st,ate achieve the st,ationary values. The curve (u) in 
Fig.1 is an example of “on-the-resonance” case, i.e., yz,Y = 
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Figure 2: Relative fluctuation of I,,, of curve (cl) in 
Fig.1. Drl = ((L1,) - (Iz)(IY))/(I~)(IY), Doz = t(I.p) - 
qL)2)/(L)2, and DZO = ((I,“) - 2(lY)2)/(IY)2. 

0. To examine the final dist,ribution, we computc,cl the 
deviation of the second order moment,s of the actiorrh from 
the relation 

WccA$) = (LAP) - (L)(Io) = Scr,(L)(4~) (13) 

of the Gaussian distribution where h,,,? is the JCrorrc%cker 
&symbol. It is shown in Fig.2 that, tllis deviation i\ very 
small except in the transient period. Thus the final btate 
could be treated as a stationary Gaussian distribution as 
long as the high order fluctuation can be neglected. \\:hen 
the operating point is far away from t.he resonance (~,r,~ >> 
l), the motion of two directions is decoupled so th;It, the 
particle distribution remains uncharrged as shown l)y the 
curve (b) in Fig.1. 

3 Equations of the moments 

Using equations of the moment.s, wo can find tlrc, t>mit- 
tances approximately, but because of t,lle sinusoidal , I(*pen- 
dence of the angle variables, it is impossible to obt aill the 
equations of the moments directly from Eq.(G). To itvoid 
this difficulty, we define 

E,j E 
J 

IzI{ fdI,d]y (14) 

The (i, j) order moment is t.hen 

(ILI{) = / Eijdt,!l.~(l<~y (15) 

Multiplying Eq.(6) by I:$ and intcgr~ating it over I, and 
I Y, we obtain a system of infinite Ilumbers of eclrnltions 
to be satisfied by Ei,. Generally, the cquat,ion I;J~ Ei, 
involves higher order terms Ei+tj ar~tl Ei-tj+,. ‘1‘11~ first 

three equations, which are relevant t,o tile evolutiori of’ (Iz), 
are 

LElO = c 
8 

2sin(A$) + co~(At,‘.)~ E30 
0 i’y 1 
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(16) 

+$ -4sin(Aq) + eos(A$)$- 1 1 El1 (17) 

LEb, = c 
I[ 

; 
4sin(A$) + cos(A$)- Eli 

a$, I 

+; -2sin(A$) + cos(A$)$- Eo2 1 > (18) z 
where A$ = & - 24,. To solve these equations, one must 
t,runcate this chain of equations at a certain order. For a 
small beam size (u,,y small), the higher order terms of Eij 
itre much smaller than the lower order one, and the trunca- 
tion is justified. The numerical simulat,ion has shown that, 
for an initial Gaussian distribution, the final state is ap- 
prosimately Gaussian also. As a consequence, Eq.(13) can 
be used to truncate the chain. It is still not easy, however, 
to solve t,he set of nonlinear partial differential equations 
(16))( 18). One further simplification can be accomplished 
by finding the return map for the moments by integrating 
Eqs.(16)-(18) over one turn. To order c, we use the un- 
perturbed values of Eij in the right-hand sides of Eqs.( 17) 
and (18), i.e., dE,,j/a?jz,, = 0 for i+j = 2. Then Eqs.(l7) 
and (18) can be easily solved. Substituting the solutions 
of Eqs.(l7) and (18) into Eq.(lG) we obtain the change in 
(I=), to order e2, 

- e2(4(My) - (I,“,, 
1 - C4W2Yy - rz)) 

2(2Y, - 71)2 . 
(19) 

Combining Eqs.(8), (13) and (19), we find the return map 
for the emittances, to order c2, 

x,+1 = 2, - e2yn(2Zn - yn) 
1 - COS(2T(2Yy - 72)) 

(27Y - 71)2 

Yn+l = yn + 2cZy,(22, - yn) 
1 - c+%b’y - 7s)) (20> 

(27, - 7Z)2 

where t,, = (Iz) It1=2~,, and yn = (Iy) 10~2~~. For a 
given initial Gaussian distribution, the evolution of the 
cmittances can be calculated from this map approximately. 
The fixed point which corresponds to the stationary state 
is 

2(IZ) - (I,) = 0 (21) 

If (I,,,) = u,,y initially, the stationary state is found from 
Eqs.(8) and (21) as 

(L) = 32G + UY) ) 

(1,) = 326 + UY) (22) 

Near the resonance, i.e. 12Yy - yZI << 1, this stationary 
st#at.e is locally stable. It implies that for an initial Gaus- 
sian distribut,ion with (IZ,y) ll=c not too far away from 

the stationary values, the emittances in the final s~.:I(I> will 
achieve this stationary value. The curve (c) in I’ig.1 is 
the evolution of (IZ,y) calculated from t,he map (20) of 
27, - 7Z = 0. Outside the transient period, the rcs~ilt is 
in a good agreement with the numerical simulation, curve 
(u). From Fig.2 it can be seen that, in the transictlt pe- 
riod, the particle distribution deviates substantially from 
Gaussian showing that the approximation used to obtain 
the map (20) is invalid. The small discrepancy h(xlween 
the stationary state of the map (20) and the final sl;lte of 
the tracking is a reflection of a small deviation of 1.11~ final 
distribution from Gaussian. Fig.2 shows that, in tll(, final 
state, 

{Z,“) - 2(Zy)2 N 0.2(lyj2 (23) 
for this special case. Using Eq.(23) instead of Eq.( I:]), we 
find the stationary state to be 

2(Iz) - l.l(l,) = 0. (24) 

The curve (d) in Fig.1 is calculat,ed fro111 this modific>tl 111ap. 
It has a better agreement with t.hc tracking result,. 

Far away from the resonance, i.e. 127, - 7=l > I, the 
map (20) is reduced to a linear map: Z, = I,-~ it11cl !jn = 

~~-1. As shown in the tracking (curve (b) in Fig.l), the 
motions in two directions are co~nplctcly decoupled al11 the 
particle distributions in two directions remain uncl~;~rlged. 

In the above calculation, the approsimations WV have 
adopted are equivalent to neglectirrg high order flrlctua 
tions. It is not easy to evaluate these fluctuations all Irough 
it is possible in principle. An alternative way is to c>\;l)and 
the distribution function. We rewrite the distributiorl func- 
tion as 

f(& &, Iy, $y, 0) = ~--Y(‘~.~kJV~rlY~~) . (25) 

For the Gaussian distribution, g = I’ + IZ/uZ + ly/q,,. It 
is expected that f is not too far away from a G;l\rssian 
distribution provided that the coupling constant t ;III~I the 
beam size are sufficiently small. If this is true, g tt~,ry be 
expanded in the form 

S(.I,?bz,1y,$y,o)= 2 kjl:Ii (26) 
i,j=O 

where Aij = Aij($x,$,y,B), and 

a 
E+j = -- 

aAij J 
emy tl I,. d Iy 

Eq.(6) could then be solved approsiniately by trrlllt,;rting 
the series for g. 

4 References 

1. P. A. Sturrock, Annals of Physics, 3, 113(1958). 

2. S. Ohnuma and R. L. Gluckstcrn, IEEE Trans. Nucl. 
Sci., KS-32, 2261(1985). 

3. L. E. Reichl, A Modern Course 111 Statistical I’hysics 
(University of Texas Press, Aus(in, 1980). 

409 

PAC 1991


