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Abstract

We have studied the phase space distribution of beam par-
ticles near an isolated difference resonance. The numeri-
cal simulation has shown that the distribution can quickly
settle down to a final state if its initial state is Gaussian.
The final state can be treated as a stationary state as long
as the high order fluctuation can be neglected. From the
Liouville equation, the emittances of beam particles are
calculated approximately. There is a good agreement be-
tween analytical and numerical results.

1 Introduction

In the system with two degrees of freedom and time de-
pendence, an isolated difference resonance does noi lead to
an instability, i.e., the motion is always confined in both =
and y directions. 1.2 For a beam of particles, therefore, the
emittances in two directions are bounded. Due to the cou-
pling, however, the energy could be transferred from one
direction to the other. As a result, an initially very small
emittance in one direction could grow to a large value.
Even though this growth may be acceptable as far as the
stability is concerned, it could influence the particle distri-
bution of the beam.
Consider an isolated difference resonance of the form

(2p)vr — 29y =+ (1)

where 2p and 2¢ are positive integers with 2p+2g > 2, n >
0 an integer, and |y| < 1. v; and vy are the horizontal and
vertical tunes. In the single resonance approximation, the
Hamiltonian in terms of the action-angle variables (I, ¢)
can be written as

H=v I + vyl —elfIicos(2pps — 29¢y +nb).  (2)

Using the canonical transformation

S(¢za-]x,¢ya]y):(éx””gg)klx“}‘(d’y“l’go)‘]y’ (3)

where /2 7,y are the tunes of the exact resonance, (2p)v2 —
(2Q)vy = nand vy = vd, + Yz, Wwe obtain a “time”

independent Hamiltonian,

K = v lp + 71y — elPIicos(2pys — 2q4y),  (4)
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with ¥, , = ¢, v = #. Since the dependence of N on
angle variables is only through 2py, — 2q4y,, I;/(2p) +
I,/(2q) is another constant of motion besides K.

The behavior of a beam can be described by the phase
space distribution of particles f(Iz, vz, Iy, 1y, 0), of which

the time evolution is governed by the Liouville equation3,
of -

where { } is the Poisson bracket. For the Hamiltonian

(4), this equation becomes
Lf = E{I;’Igsin@pl/)z — 24, ) (255 — 205%)
+ cos(2pys — 208, ) (I IS 5o + aI2 13 550 } £ (6)

where

i} 0 J

L= 2 +7Ia/ +7y5f—u,); (7
is an integrable operator. Since the Liouville operator
£ = i{K, } has only real eigenvalues,? the solution of the
Liouville equation will not settle into a unique equilibrium
state. The final state of the Liouville equation depends on
the initial distribution. It is easy to sce that the angle inde-
pendent stationary state of Eq.(6) is [ = f(I./2p+1,/2q)
which is an arbitrary function of I,/2p + I,/2q. Since
I./2p + I,/2q is a constant of motion, the mean actions,
which correspond to the emittances in two directions, sat-

isfy
(I:)/2p + (Iy)/2¢ = constant . (8)

In the following, we present a coupled sextupole resonance:
2p =1, 2¢ = 2 and n = 2. The treatments is, however,
applicable to any p, ¢ and n values.

2 Numerical simulation

To understand the evolution of particle distribution, we

have tracked numerically an ensemble of particles in a test
lattice with four sextupoles placed symmetrically. De-

_1 _1 _1
fine & = By %z, & = By, ne = By *dx/di. and
N = ﬂo_%dy/dﬁ. At each sextupole, &, are unchanged
but

3, .
G
%
23ﬁ0 frﬁy

A, = “53)

Any = (9)
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Figure 1: The evolution of the emittances from the numer-
ical tracking of 1000 particles, {(a) and (b), and from the
equations of the moments, (¢} and (d). The initial state
is a Gaussian distribution with o, = o, = 0.5 x 10-3mm,
and sg = 0.05m~?, By = 100m. In each curve the upper
branch is (I;)/o, and the lower one (I;)/c;. (a) is on the
resonance with v, = 1.65 and v, = 1.825. (b) is far away
from the resonance with v, = 1.70 and v, = 1.65. (¢) and
(d) have the same conditions as (a), but (¢) is calculated
from the map (20) and (d) is calculated from the modified
version of the map (21) in which Eq.(24) instead of Eq.(13)
is used.

where s = sg at § = mmand s = —spat 6 = (m+ 1/2)n
for m > 0. Between sextupoles, it is a linear rotation
Se,y

[ Cey | &z N oy
“Sry Cry Nx,y e,y
where ¢; 4 = cos(2nv; y /4) and s; , = sin(27v; 4 /4). The
Hamiltonian of this system can be written as

| o

1
H o= gvall+m2)+ 5wl +m)

+-§sOﬁ§b(0)(52 36,62 (11)

where b(0) = 6(8) — 6(6 — %) +6(0 —m) — 6(6 — 3). In the
single resonance approximation, this Ham1ltoman can be
easﬂy reduced to the Hamiltonian (2) with 21, , = &2, +
nry and 2p = 1, 2¢ = 2, n = 2. The initial partlcle
distribution of the beam is assumed to be Gaussian

£+ &Gt
20, 20

f(fxynra‘fwny’o)"’e)(p(‘" ) (12)

When the operating point is very close to the resonance
(7z,y < 1), it has been found out that the distribution
function quickly settles down to a final state. Except for
the small fluctuation, the mean actions (emittances) in the
final state achieve the stationary values. The curve (a) in
Fig.1is an example of “on-the-resonance” case, i.e., vz 4 =
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turn

Figure 2: Relative fluctuation of /., of curve («) i
Fig.l. Duy = ((L:1y) = (I){1y)/ (=) (Iy), Doo = ({1
2(L:)*)/(I)?, and Dao = ((I7) — 2(1y)*)/(Ly}*.

)

0. To examine the final distribution, we computed the
deviation of the second order moments of the actions from
the relation

(AlaAlg) = {Ialp) = {La){Is) = bap(la)(ls)

of the Gaussian distribution where 4,4 is the Kronccker
§-symbol. It is shown in Fig.2 that this deviation is very
small except in the transient period. Thus the final state
could be treated as a stationary Gaussian distribulion as
long as the high order fluctuation can be neglected. When
the operating point is far away from the resonance (v, , >
1), the motion of two directions is decoupled so that the
particle distribution remains unchanged as shown by the
curve (b) in Fig.1.

(13)

3 Equations of the moments

Using equations of the moments, we can find the emit-
tances approximately, but because of the sinusoidal depen-
dence of the angle variables, it is impossible to obtain the
equations of the moments directly from Eq.(6). To avoid
this difficulty, we define

qu/ggmuwy (14)
The (i, j) order moment is then
(ILI) = ] Eijdyedy, . (15)

Multiplying Eq.(6) by I;Ig and integrating it over /. and
I,, we obtain a system of infinite numbers of equations
to be satisfied by Ej;. Generally, the equation for Eyj
involves higher order terms Eiy1; and Ei 1541 The first
three equations, which are relevant to the evolution of {I,),
are

LEjg=c¢ { [251n(A¢») + cos(A)— 0 E3,

)t,ZJ

(&1
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1

+3 [_3sin(A¢) + cos(Ad))E-Z—z:I E,}l} (16)

LE3, =« { 2sin(AY) + co.s‘(Azp)a—Z—y-J Eq
+% [—4sin(A¢) + cos(Ay) 53,] Ell} (17

EH

LE'%I =¢ { 4sin(Ay) + cos(Ad))%
- y ]

+-;— I:——Qsin(All)) + cos(AY) 833] E()g}

(18)

where A = ¢z — 2¢),. To solve these equations, one must
truncate this chain of equations at a certain order. For a
small beam size (o, , small), the higher order terms of Eyj
are much smaller than the lower order one, and the trunca-
tion is justified. The numerical simulation has shown that,
for an initial Gaussian distribution, the final state is ap-
proximately Gaussian also. As a consequence, Eq.(13) can
be used to truncate the chain. It is still not easy, however,
to solve the set of nonlinear partial differential equations
(16)-(18). One further simplification can be accomplished
by finding the return map for the moments by integrating
Eqs.(16)-(18) over one turn. To order ¢, we use the un-
perturbed values of E;; in the right-hand sides of Eqs.(17)
and (18),i.e., 0F; ; /0ty = O for i+j = 2. Then Eqgs.(17)
and (18) can be easily solved. Substituting the solutions
of Eqs.(17) and (18) into Eq.(16) we obtain the change in
{I;), to order €2,

1 cos(2n(2y, — 72))
2(2yy — v:)? .

Combining Egs.(8), (13) and (19), we find the return map
for the emittances, to order €2,

— (L) — (12) (19)

1 — cos(2n(23, — 7))

Tyl =Ty — g?yn(an - yn) (27, — 7 )2
y T
1 - cos(2n(2y, —
Yn+1 = Yn + 2623/"(2% - yn) (Qi' ( Zy)g 71:)) (20)
y — Tx
where z, = (1) |s=2rn and yn = (I} lo=2+n. For a

given initial Gaussian distribution, the evolution of the
emittances can be calculated from this map approximately.
The fixed point which corresponds to the stationary state

) (21)

If (I;,) = 05,4 initially, the stationary state is found from
Eqs.(8) and (21) as

2L) (1) =0 .

(L) = 3 (0e +,) |

1
(1y) = ‘2‘(20'r +oy) (22)
Near the resonance, ie. |2y, — 7-| << 1, this stationary
state i1s locally stable. It implies that for an initial Gaus-
sian distribution with (I 4} li=zo not too far away from

the stationary values, the emittances in the final state will
achieve this stationary value. The curve (¢) in Iig.l is
the evolution of (I ,) calculated from the map (20) of
27y — 7z = 0. Outside the transient period, the result is
in a good agreement with the numerical simulation, curve
(a). From Fig.2 it can be seen that, in the transient pe-
riod, the particle distribution deviates substantially from
Gaussian showing that the approximation used to obtain
the map (20) is invalid. The small discrepancy between
the stationary state of the map (20) and the final state of
the tracking is a reflection of a small deviation of thie final
distribution from Gaussian. Fig.2 shows that, in the final
state,

(12) - 2(1,)? = 0.2(J,)? (23)
for this special case. Using Eq.(23) instead of Eq.(13), we
find the stationary state to be

2L — 1.1{1,) = 0. (24)

The curve (d) in Fig.1 is calculated from this modificd map.
It has a better agreement with the tracking result.

Far away from the resonance, i.c. |29, — 4| > |, the
map (20) is reduced to a linear map: r, = z,_; and y, =
Yn—1. As shown in the tracking (curve (&) in Fig.1), the
motions in two directions are complctely decoupled anl the
particle distributions in two directions remain unchanged.

In the above calculation, the approximations we have
adopted are equivalent to neglecting high order fluctua-
tions, It is not easy to evaluate these fluctuations although
it is possible in principle. An alternative way is to cxpand
the distribution function. We rewrite the distribution func-
tion as

Iz, ¥, Iy, gy, 0) = em9Un ¥y ¥u8) (25)

For the Gaussian distribution, g = ¢+ I;/o, + I, /7. It
is expected that f is not too far away from a Gaussian
distribution provided that the coupling constant ¢ and the
beam size are sufficiently small. If this is true, g niay be
expanded in the form

oo}

L.
9(13;¢xy1yv¢y,0) = Z Aijlglé (26)
i,j=0
where A;; = Ajj(ve, ¥y, 0), and
8 -
E%j :_(9141']' /e Ydl.dly . (27)

Eq.(6) could then be solved approximately by truncating
the series for g.
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