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Abstract time t are R(t) and V(t). 

An analytic solution is given to 
the Vlasov equation describing the 
time evolution of an axially 
symmetric beam of charged particles 
spreading radially under the 
influence of self fields. The 
marginal densities as a function of 
radius and of radial velocity are 
found to be flat out to the 
expanding edges of the beam. This 
solution is shown to have the 
maximum entropy for a given phase 
space area. Thus an arbitrary 
initial distribution will evolve 
toward this solution as a limiting 
distribution. 

The time-dependent limits R, V (a 
= V/R) are calculated by solving the 
envelope equation-of-motion of a 
test particle on the edge of the 
beam 

& = [ 2Ne2 I 1 ~ K 
dt2 47t~:~r-q~ R 2 (2) 

I. INTRODUCTION 

A beam of charged particles will 
expand radially as it propagates in 
free space due to pairwise- 
repulsive, internal electric fields. 
It will be shown that the time- 
dependent distribution, f(r,v,t), 
that describes the particle density 
as a function of radius, r, and 
radial velocity, v, of an axially 
symmetric beam approaches a limiting 
analytic form 

fJr, v, t) = 

where N is the number of particles 
per unit length of the beam, e and m 
are the charge and mass of an 
individual particle, 6, is the 
permitivity of free space 
(rationalized units), and y is the 
relativistic factor related to the 
longitudinal velocity, vii of the 
particles, Y=[~-PQ/c~*l l 

The 
collection of constants inside the 
bracket of eq.(2) will be designated 
K, the beam perveance, and set equal 
to unity (K=l) for convenience in 
the rest of the discussion. 

Solutions [l] to eq. (2) are 

v2 = 2lrl$- , t= Rdx 
s R, v(x) 

i '3 ) 
cl 

R(t) and V(t) are plotted in figure 
1 for K = 1. This defines the 
parameters R, R,=R(O), V, and a. 

A exp[- (2R2/3) (v-ar)2/2e2] (1) 

with A = [ (12~)~'~~:]-~ 

II. PROOF 

The proof that eq. (1) is the 
limiting density function is as 
follows. Define the quantity 

H(t) = - // -f lnf dv dr = <In f>(4) -I -m 
for r < R where R,a are functions of 
time (to be defined), E is the 
emittance and r,v are phase space 
coordinates whose maximum extent at 

H is related to the entropy, S, of 
the system by H=-S/kb n where k, is 
Boltzmann's constant and R is the 
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volume of the system. The Boltzmann III. DISCUSSION 
H theorem [21 states that H 
decreases with time A unique property of f, is that 

dH 2 0 
its marginal densities 

dt (5) 
g,(r) = S_:f dv , g,(v) = [:f dr(9) 

until some asymptotic limit is 
attained. 

It can be shown from probability 
theory [3] that the form of the 
distribution function, f, that 
maximizes the entropy of the system 
can be constructed from the 
constraints imposed on the system in 
the following manner. If each of n 
system constraints is expressed as 
an expectation value of a given 
function equal to a constant 

are uniformly distributed, 
specifically g,=(2R)-i, g,=(ZV)-' for 
r<R and v<V, respectively. The 
Coulomb repulsion homogenizes the 
spatial and velocity density 
functions out to the edges of the 
expansion. 

The Vlasov equation [1] describes 
the evolution of a density 
distribution driven by space charge 
fields 

<h,> = c, (6) - af af af 
at =Var+aaV (10) 

then the density function with the 
maximum entropy is where a is the acceleration of a 

f, = exp (En anh,) (7) 
particle at radius r. In general, 
a is given by 

if the constants a, can be found. 
In the present case we first want f, 
to normalize to unity so that we 
chose h,=l, ci=l. Second, we want 
to keep emittance constant by making 
the local width in the v-direction 
inversely proportional to <r*>l/*. 
Thus we chose 
c2=E2//2<r2> 

h2=(v-<v(r)>)*, 
where the local mean 

velocity is defined as 

s vf(r,v) dv 
<v(r)> = 

s 
(8) 

f(r,v) dv 

This reasoning leads to eq.(l) as 
the maximum entropy distribution 
(hence the subscript S on f) and to 
the conclusion that any initial 
distribution will asymptotically 
approach this analytic form as it 
seeks to maximize entropy (following 
the Boltzmann H-theorem). In 
general the entropy of a beam is 
proportionalto the logarithm of the 
emittance in agreement with ref. 4. 

a (1) s I = 1 0 rg, dr 
r s 0 

-rg, dr 
(11) 

Eq.(l) satisfies the Vlasov equation 
since a = r/R*, <v(r)> = or, and 
<r*> = R*/3 for f,. 

Fig. 2 shows an initial phase 
space distribution and numerical 
solutions of eq.(lO) at two 
subsequent time intervals. We see 
how the dynamics have forced a high 
degree of correlation between the v 
and r coordinates of the particles 
while preserving the phase space 
normalization and area. 

If an initial phase space 
distribution is prepared in the form 
of eq.(l) emittance will not grow. 
Any other distribution will increase 
its emittance as it approaches the 
limiting distribution. 

At very long times the limiting 
distribution becomes 

f,(r,v, t-1 - -&a (v-ar) (12) 

for r<R. Eq.(12) is the density 
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describing the envelope solution of 
eq. (2) for an initially uniform 
spatial, zero emittance 
distribution. 

In summary it has been shown that 
axially-symmetric charged-particle 
beams spreading under the influence 
of space charge forces evolve toward 
a limiting phase space density 
function, eq. WI which has the 
maximum entropy for a given 
emittance. The same analysis can be 
applied to spherical charge 
distributions. 
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Figure 1. Envelope radius, R, and 
radial velocity, V, as a function 
of time. The units are: radius 
(R,) , 
(R,,K1,2;f10c=ty 

(Kl/*) I and time 
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Figure 2. 
beam 

Phase space plots of the 
density 

times. 
f(r,v,t) at three 

Highest density is in the 
center contour. The horizontal axes 
are radial extension (only positive 
values of this cylindrically 
symmetric distribution are shown); 
the vertical axes are 
velocity. 

radial 
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