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Abstract 
We establish the condition for stable single particle 
motion in a storage ring with very small momentum 
compaction, and very short bunch length, the Quasi 
lsochronous ring. We discuss how this condition can be 
achieved and its applications to colliders and synchro- 
tron radiation sources. 

Introduction 
The six dimensional phase-space density of an electron 
beam in a storage ring is determined by the emission of 
synchrotron radiation, and by the transverse and lon- 
gitudinal focusing forces determining the particle tra- 
jectories In the simplest case of uncoupled horizontal, 
vertical and longitudinal motion, the phase space 
volume occupied by the beam can be characterized by 
the product of its three projections on the single degree 
of freedom planes, the horizontal, vertical, and longitu- 
dinal emittances. 
To minimize the beam phase space volume we can 
minimize the transverse and longitudinal emittances. In 
the case of the transverse emittances this problem is 
very important for synchrotron radiation sources, and 
has been studied by several authors [l]. The results 
have been used to build high brightness synchrotron 
radiation sources like the ALS at Berkeley and the APS 
at Argonne. 
A method to minimize the longitudinal emittance, and 
produce electron bunches with a short pulse length, 
small enemy spread and large peak current has been 
proposed and discussed recently [2] by C. Pellegrini 
and D. Robin. Such a beam would find applications in 
synchrotron radiation sources for the production of 
picosecond long high brightness radiation pulses, and 
in lepton colliders, like the meson factories, where it can 
lead to larger luminosity for the same beam current, 
since a shorter bunch allows the use of stronger 
focusing and smaller transverse area at the interaction 
point. 
This method uses a ring in which the revolution period 
is weakly dependent on the particle energy, Quasi 
lsochronous Ring (QIR), in other words a ring with a 
momentum compaction nearly zero. In this paper we WIII 
extend the previous analysrs of the conditions for stable 
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single panicle motion in such a ring, and give simple 
criteria for the estimate of the energy spread and phase 
acceptance of a QIR. 

Single Particle Motion 
We consider only the uncoupled longitudinal motion, 
using as variables the phase @respect to the RF system, 
and the relative energy change respect to the reference 
particle, b = ( E - E r ) / Fr. In our approximation we 

neglect the betatron oscillation amplitude, and the 
transverse displacement of a particle is a function of 6 
only, and can be written as 

(1) 

where 11 0 is the linear dispersion function and 11 , 

describes the first non linear correction. 
The change in phase with energy respect to the refer- 
ence panicle is determined by the change in revolution 
time, i.e. the change in velocity, and the change in the 
length of the trajectory. 
The change in trajectory length is 

-Il.= If ((1 +.\./p)?+ ,.‘ytls-[. (2) 
d RT 

where the integration is done on the reference trajectory 
(RT) of length L, and a prime indicates a derivative 
respect to the RT arc length, s. Assuming x, x’ to be small, 
expanding (2) to second order in band using (1) we 
have 

~~=w,,.~~r=w,;P(tx,b+a,,b') 

where 

a = ;j,,f(i,-i 
(3’; y; 

I r :1 11 I j 3 I 
a,=- I I ,I)‘;+- :<1.5+-- 

Ltii~~jL P i 2 p ; y ; 

The term a , is the momentum compaction as defined in 

the linear theory, and urI is the first order non linear 

correction. which we call the longitudinal chromaticity. 
Notice that the first term in the integral in equation (5) 
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the square of the derivative of the linear dispersion, is 
always positive, while the second term, which can be 
controlled with sextupoles, can be either positive or 
negative, and allows us to control the value of the 
longitudinal chromatic&y and make it zero. 
Using these notations, the equations for the longrtudinal 
motion (synchrotron oscillations) can be written as 

I$’ = h(a,6+ a,62) (6) 

e I/’ 0 
b’=-- ~sin(~+b,)-sln(O,)}-~+~ (7) 

2IlE, 

where a prime now indicates a derivative respect to cu 0 1, 

h = w RF / cuO is the harmonic number, VO is the peak 

RF voftage,r the damping time,+ the fluctuation term, 

and C$ r the phase of the reference particle. 

We study initialfy equations (6) and (7) neglecting 
damping and fluctuations, to determine the phase space 
area for stable single particle motion (closed, bounded 
phase space trajectories). In this case the system can 
be described by the Hamiltonian 

H=H, + iha2b3 (8) 

points is smaller than the energy acceptance given by 
(11) the separatrix through this unstable point will 
determine the corrected acceptance, which is now given 
approximately by 

(12) 

If the opposite is true, we will have two separatrices Of 
the usual form, as in fig. 1, separated by an increasing 
distance as we make the ratio of the a’s larger. 
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When the longitudinal chromaticity is zero (6) and (7) 
are the usual synchrotron oscillation equations. The 
space phase trajectories, as shown in fig. 1, are char- 
acterized by one stable and one unstable fixed points. 
Assuming cos I$, > 0 , the small oscillation frequency 

around the stable fixed point is 

v, = {ha,e~~,cos~,/7_~E,}“* (10) 
The separatrix through the unstable fixed point defines 
the stable oscillation region. The maximum stable 
energy displacement is 

When we reduce the value of a ,, the energy acceptance 

given by (11) becomes larger. However the longitudinal 
chromaticky term becomes now important. and the 
phase-space trajectories are modified, as shown in fig. 
2. There are now two stable fixed points and two 
unstable fixed points, located at &I = 0 , 41 = n - 2 b, and 

6 = 0. b = - a , / a 2. These points will define two sepa- 

ratrices. as shown in fig. 2, passing through the two 
unstable points and surrounding the stable points. For 
cos I$, > 0 the point at (0,O) is stable and the point (0, 

- a , / a 2) is unstable. If the distance between these two 

Figure 1: Longitudinai phase space trajectories. In this 
case a:, = 0. 
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Figure 2: Longitudinal phase space trajectories. In this 
case a?jel = 100. 
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Notice that in all cases we have now two stable regions 
in phase space. In the usual case they look like in Fig. 
1, RF buckets, and their separation is so large that 
particles in the second bucket would have a very 
different energy and could not stay in the ring. In the 
case of small momentum compactlon, and an accep- 
tance determined by (12), the two regions have a 
different shape, Fig. 2. We WIII call them Alpha-buckets. 
The difference In the central energy of the two Alpha- 
buckets isthe same as the expression (12) ofthe energy 
acceptance. These two regions could both contain 
particles which can survive tn the ring. However one can 
still fill only one of them. 
The phase acceptance can be also easily determined 
by finding the intersection of the separatrices with the 
curvesb = 0. b = -n, /a?. 

Conclusions 
We have established the phase space structure for a 
QIR, and given a simple expresslon for the ring energy 
acceptance. We must also notice that these results are 
based on a simplified model of the CUR. We are 
neglecting the effect of betatron oscillations and 
expanding the equation only to second order in& A more 
complete description requires a full non linear tracking 
of the pamcle motion in the ring. These results can 
however be used as a guide to the design of the ring 
lattice. It is for instance apparent the tmportance in the 
ring design of controlling simultaneously both the 
momentum compaction and the longitudinal chroma- 
ticity, so that their ratio will remain large enough to 
provide the needed energy and phase acceptance. This 
requires that we now control and make zero or nearly 
zero the two transverse chromaticrties and the longi- 
tudinal chromaticity. This can be done using at least 
three families of sextupoles. As usual these sextupoles 
may reduce the ring dynamic aperture, and their 
placement and number will need to be properly selected 
to keep this reduction to a minimum. We are now 
studying the lattice of rings of the QIR type that can 
produce bunch length in the millimeter or submillimeter 
region. 
The peak current in such short bunches can be made 
large by using the longitudinal coupling impedance 
reduction with bunch length, and the synchrotron radi- 
ation damping, as discussed in [2]. 
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