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Abstract 

The extension of our OSCAR’LD code to the comput,a- 
t,ion of azimuthally dependent modes of axially symmetric 
cavities is presented. The code makes use of E, and E, 
as independent field components to+nuFerically solve the 
Maxwell’s equations. Enforcing of V. E = 0 both ensures 
that spurious modes cannot arise and reduces the num- 
ber of field components to be considered in the solution 
process. This formulation of the problem leads to a linear 
eigenvalue problem for a matrix which is then solved by the 
Rayleigh quotient iteration. The code has been validated 
by comparing its results with those obtained by analyti- 
cal tools. Comparisons wit,h measured values have been 
performed, too. 

1 Introduction. 

Axially symmetric cavities are widely used to accelerate 
charged particles in both linear and circular accelerators. 
In principle, the working mode of these accelerating de- 
vices is usually an axially symmetric one, nevertheless az- 
imuthally dependent modes are invariably present because, 
in practice, symmetry is always broken by couplers and 
tuners. Any asymmetry in the beam leads to excitation of 
azimuthally dependent modes, too, as well as electron dis- 
charge, if present, does (because traject,ories involved lie 
in the I*-: plane). Since excitation of azimuthally varying 
fields may lead to beam breakup, the importance for the 
cavity drsigner of being able to compute them is apparent. 

Programs already exist, indeed, that can compute these 
modes, t,he most popular of them being certainly URMEL- 
T [l]. Anyway, because of the good properties shown by 
t,he approach ustd in the OSCAR’LD code [2] to compute 
‘TM and ‘I’E monopolar ( i.e. axially symmetric) modes, 
t,his code has been ext,ended t#o the comput,ation of hybrid 
multipolar ( i.e. azimut~hally dependent) ones by keeping 
the same discrctization and solution scheme [3]-[5]. 

2 Problem formulation. 

In monopolar modes one of electric and magnet,ic fields has 
one nonzero component only, thus it is quite natural to 
use this component as the unknown quantity so reducing 
the problem to a scalar one. On the contrary, in multi- 
polar modes both electric and magnet,ic fields have three 
nonzero components each, so that the way Maxwell’s equa- 
tions are reduced to a system of two scalar equations is a 
crucial point. As a matter of fact different ways to per- 
form such reduction lead to problems ranging from a quite 
standard linear eigenvalue problem [l] to a nonlinear eigen- 
value problem with singularities (a formidable one!) [6]-171. 
Moreover it is just at this stage that you must take care 
the system has strictly the same solutions as the original 
problem. In fact, any formulation someway lacking in this 
respect will be, more or less, plagued by spurious modes 

PI. 
In order to formulate the problem of computing reso- 

nant modes of a cavity we writ,e the Fourier transformed 
Maxwell’s equations in vacuum with suitable boundary 
conditions for a finite region of space Q surrounded by 
a perfectly conducting surface rl and possible symmetry 
and skew-symmetry planes (for the E, component) that we 
will indicate by lY2 and rs, respect,ivev. Thus, b+y assuming 
without any loss of generality that ‘H(r’: f) = H(?‘) cos(icrl) 

and f(?,t) = g(r‘)sin(wt) t o ea only wit,h real quantities d 1 
and by posing w/c = k, the problem t,o solve is 

I 

?/\.??=kl? inn 

e-/\I?=kl? inR 

-?.E=o in R 
+.g=o in 0 (1) 
l?A?i=O on ITI U r:! 

F?Ali=O on I13 

wit,h k # 0, rI U I’2 U l73 = dV, 6 unit vector normal to 
db’. 

It can be shown that problem (1) is strictly equivalent 
to 
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‘72.!?+k21?=0 inR 

(2) 

in the sense that if electric field is det,ermined by problem 
(2) and magnetic field is recovered from it as 

(3) 

then all the solutions of problem (1) and just them are 
obtained so that no spurious solutions are introduced. 

By rewriting the equat,ions by components, separating 
variable 4 in such a way that 

&(r,d, 2) = e,(r, z) cosn$ 
E+(r, 4> z) = ed(r, 2) sin nd (4) 
E,(T,AZ) = e,(r,z)cosn~ 

dropping some dependent equations, solving e. l? = 0 
for e4 and substitut,ing it in the remaining equations, we 
obtain the following 2D problem: 

6 3 de, 
i3r2 +rar+ 

(1 - n2)e, i12e, 
r2 + at2 + (5) 

+i% + k’e,. = 0 in Q’ 

02e2 1 de, n2e1 d2ez 
p+;F----p--+-g-p+k”e, =0 inR’ 

with boundary conditions 

de, de, 
r-+r-+e,=O (e+=O) 

e~!~nLI-1~cosO=O (f?.i=O) 

on r: u I?/, 

on r; u r; 
de 
-2 = 0 
dz 

(h+ = 0) on r$ (6) 

e, = 0 (CT. n’= 0) on r$ 
de, e -0 ---=(I I-- (n = 1) on z-axis 
6% 

E z=e,=O (n > 1) on z-axis 

where s1’ = 0 n P, r: = rl n P and P is any (T,z) half 
plane, while a is the angle between n’ and the z-axis and c 
is the unit tangent vector to the curve r:. The conditions 
on the z-axis are obtained by taking the limit as T -+ 0 of 
Maxwell’s equat,ions written by components. See Fig. 1 
for an example of an integration domain. 

Once e, and e, have been found by solving problem (5)- 

(6), then ed can be computed from ‘?. E’ = 0, I!? from 

equations (4) and l? from equation (3). 

I- i 
L’ r,’ 

-3 
Figure 1: Example of integration domain. 

3 Discretization and Solution. 

Problem (5)-( 6) is still a linear eigenvalue problem, even 
though more complicate than those for monopolar modes, 
so it can be discretized and solved by the same methods 
that have been already implemented in OSCARJD. Since a 
detailed description of these methods can be found in pre- 
vious papers [3]-[4], just an outline of the solution process 
is given here. 

Problem (5)-(6) is d iscretized by a standard finite dif- 
ference method on a square mesh wit#h an accurate treat- 
ment of boundary conditions [3]-[4]. The resulting matrix 
eigenvalue problem is worked out by a Rayleigh quotient 
iteration where the biconjugate gradient method is used to 
solve the linear algebraic system involved. Initial approx- 
imations for the Rayleigh quotient iteration are provided 
by an overrelaxation technique where any iterate is kept 
orthogonal t,o all the previously comput,ed eigrnmodes [5]. 

4 Tests and Comparisons. 

In order to validate our program, some dipolar modes of 
spherical and cylindrical resonators have been solved by 
using 2000 and 3300 mesh points, respectively, and fields 
and frequencies so obt,ained have been compared with cor- 
responding analytical values. Some results of this compar- 
ison are shown in table 1 and 2, where errors in frequencies 
and fields are reported. 

Table 1: Errors in frequencies and fields for some dipolar 
modes of 

Mode 

Q,r,4 
TM111 
TM211 
TElll 
TM311 
TE211 
TM411 

tl he spherical resonator (2000 mesh points).. 
Relat . error Max.abs.normalized error 
in frequency in e, in e, 

3.8 I 10-4 2.0 1o-3 2.5. 1O-3 
4.0. 1o-5 1.0 1o-2 1.4 1o-2 
5.8. 1O-4 2.9 . 1o-3 2.0 10-3 
3.2. lo-” 8.9 lo-” 6.8 lo-” 
1.1. 1o-3 1.8 lo-’ 3.4 lo-” 
1.0. 1o-3 1.0 lo-” 2.3 10-2 

Since fi ie Id components can bc zero, absolute errors nor- 
malized to the maximum value of the strongest compo- 
nent have been used for them, while relative errors have 
been used for frequencies. Table 1 and 2 show that a good 
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agreement is achieved even with a limited number of mesh 
points; better results are obtained, of course, with a larger 
number of points. 

Table 2: Errors in frequencies and fields for some dipo- 
lar modes of the cylindrical resonator (3300 mesh points). 
jtarred errors correspond to zero components. 

Mode Relat error Max.abs.normalized error 

d!T,Z in frequency in e, in e, 
TElll 3.5 10-5 5.1 . 1O-7 (*) 2.6 1O-3 
TE112 3.7 10-4 1.4. 1o-7 (‘) 1.0 10-2 
TM110 3.6. 1O-4 2.9 . 10-4 4.5 10-5 (*) 
TM111 3.1 10-4 2.9 10-4 4.8 1O-3 
TM112 8.5. 1O-6 2.9 1o-4 3.2. 1O-2 
‘l’E113 1.0. 1o-3 1.7. 1O-6 (*) 2.3. 1O-2 

A comparison between some computed and measured 
dipolar mode frequencies for a cavity of the synchrotron 
light source ELETTRA [9] has been performed, too. Re- 
sults are reported in table 3. About 3000 mesh points have 
been used in these computations. All computed frequen- 
cies agree with measured ones within about 3 10m2, an 
acctpt,able value since several hard to control perturbing 
effects are always present in a real cavity. Fig. 2 shows the 
contour plot of e, for one mode of the ELETTRA cavity. 

In all the tests that have been carried out, no spurious 
solution was produced. 

Table 3: Computed and measured [9] frequencies for 
some dipolar modes of the ELETTRA cavity (3000 mesh 

ointsl 
Frequency (Mhz) 

‘i 

measured 
748.7 

1221.3 
1306.6 
1637.8 
1720.1 

5 Conclusions 

The OSCAR2D code has been extended to the computa- 
tion of hybrid mult,ipolar modes of cylindrically symmetric 
cavities. No spurious mode is produced by the.program. A 
good agrcx<,nlent with analytical solutions has been found. 
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