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Abstraci 

We present a method of computing a one-turn map for a 
storage ring. Each element of the lattice is represented by 
a matrix for a linear element followed by a Lie generator for 
a nonlinear multipole kick. All matrices are moved to the 
front of the lattice and multiplied to form a single matrix. 
This re-arrangement also changes each nonlinear Lie opera- 
tor by a similarity transformation. The Campbell-Baker- 
Hausdorff (CBH) theorem is used to combine successive 
nonlinear generators into one generator which is then ex- 
pressed as a perturbative series in the multipole strengths. 
In principle, the program can be used to compute the CBH 
series to any desired order. Routines from a differential al- 
gebra library Zlib are used to perform all operations. The 
advantages of this form of the map are (a) It presents a 
direct physical connection between the degree of nonlinear 
behaviour and the strengths of the multipoles, (b) faster 
extraction time for the map compared to the usual Taylor 
map of similar accuracy, and (c) the map is guaranteed to 
be symplectic. 

The dynamics of single particles in storage rings can be 
reproduced to the desired accuracy by Taylor map rep- 
resentations of the lattice, even over long time intervals 
[l]. These maps have the advantage of being quicker to 
track (by an order of magnitude) than conventional ele- 
ment by element tracking routines such as Teapot and fur- 
thermore the maps can by analysed (using the theory of 
normal forms) to obtain quantities such as the tune shift 
with amplitude, the smear etc. without the necessity of 
tracking [2]. The longest part of the process involves ex- 
tracting the Taylor map from the lattice description. Typ- 
ically, it takes 12 CPU hours on the Cray to extract an 
11th order map representing the SSC collider. Here we 
present a method for faster extraction of a map for a large 
ring, based on the exponential representation of a symplec- 
tic map [5]. Depending on the model chosen for the lattice 
(thin-lens, thick-lens etc.) an exact map representation for 
the lattice can be obtained. However due to computer lim- 
itations, in actual use the map must be truncated in some 
fashion. We choose as our basis for truncation the order of 
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the multipole strengths so that in effect we represent the 
lattice as a perturbation series in the multipole strengths. 
We estimate that with terms up to the fourth order the 
map should be sufficiently accurate as to agree with ele- 
ment by element tracking routines. Below we outline our 
algorithm for extracting the map. 

ALGORITHhl FOR LIEMAP 

We choose as our model the thin lens representation of 
the lattice. Thus each magnetic element is represented by a 
kick at the center of the element followed by a drift to the 
center of the next element. The Hamiltonian generating 
the motion from one magnet to the next may be written 
as 

H = -(l + ;)[(l + 6)2 - pi - p;]1/2 - ; - 3 (1) 

where our phase space coordinates are (I, pr) y, p,, , CT, p,). 
The momenta have been scaled by pe, the design momen- 
tum and pr = -(E - EO)/POC. The relative momentum 
deviation 6 = (p - po)/po is related to pr as 

6= l-%+&1 
\i 

The longitudinal vector potential A, can be written as 

- 2 = [(-$ - K1)z2 + qy2 - ;I + VNL (2) 

p is the bending radius at the magnet, Ki is the focussing 
strength and VNL is the nonlinear potential due to higher 
order multipoles. In terms of the usual skew and normal 
multipole coefficients a,, b, it may be expressed as 

vNL(x, Y) = (z +iy)“+’ (3) 

Bc is the design bending field. In the kick approximation 
VNL may be regarded as the potential due to an impulsive 
force at the center of the magnet. For a large ring such 
as the SSC it is an excellent approximation to expand the 
terms in the Hamiltonian within the square root in equa- 
tion (1) and keep only the terms linear in pz and pi. With 
this approximation the Hamiltonian may be written as a 
sum of three terms 

H=HDR+HLK+V,L (4) 
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where n sl 
H 

I& + Py” DR=--(6+$ 
2(1+ 6) (5) 

generates the drift between the magnetic elements and 
HLK generates the linear kick due to a dipole or 
quadrupole. For a dipole HLK is given by 

22 62 
HLK=--P 2P2 

while for a quadrupole it is given by 

H LK = - 
K1 2 --z + K1 2 
2 TY 

Let .?‘k represent the phase space vector at the element 
k. Then the motion to the next element is determined by 
the evolution operator exp(- : sH :), s being the coordi- 
nate along the path and : H :E {H, }, the Poisson bracket 
operator. Hence 

(8) 
where D is the drift length from element k to element k+l 
and L is the length of the kth magnetic element. Since 
HDR and HLK are quadratic polynomials in the transverse 
variables they generate linear transformations in the trans- 
verse phase space and consequently may by represented by 
matrices MDR and MLK respectively when acting on this 
space. The transformation of the time of flight may be 
evaluated independently as none of the other variables de- 
pend on this variable except at a rf cavity. Since most of 
the computational effort is spent in updating the trans- 
verse variables we will concentrate on the tranformation 
of these variables in what follows. From the above we see 
that if ijk represents the five dimensional phase space vec- 
tor (zt,Pzk,yk,pyk,6k) at element k, then 

fk+l = bfDR(fjk)exp(: -VNL(zkr Yk))L :)MLK(fk)fk 

(9) 
where MDR and MLK are the exponential operators gen- 
erating the drift and linear kick respectively. Combining 
all the transformations for the N elements in the ring and 
relabelling the subscripts, we find that the lattice may by 
represented by a map of the form 

.hl = MNtlezJN’ _. .M2e’f1’Ml (10) 

where each fk is a polynomial in the coordinates (zk, yk) 
of the kth magnetic element. As written, this map cannot 
be computed since each operator is a function of differ- 
ent variables. Instead we must first transform all of them 
into functions of the same variables, for instance the phase 
space coordinates at the beginning of the ring. Using the 
relation 

,:Ja(?a,:,j, F ,:Ja(ila):;Jdrfr):ijl = ,:J~(~d~,:f&L):,j, (11) 

we find that the order of the operators is inverted and the 
map for the complete ring is 

M = Mle’J1’M2.. .e’fN’MN+l (12) 

where now each operator involves functions of the initial 
phase space vector ril. 

We now wish to combine all nonlinear operators into a 
single such operator which will be arranged as a pertur- 
bative series in the multipole strengths. We move all the 
linear operators to the right by a sequence of similarity 
transformations. We also replace the linear operators ,tik 
by their matrix representations Mk and use the fact that 
the exponential operators act in the reverse order to their 
matrix representatives, i.e 

Ml(ijl)Mdjjl)jjl = M2MlGi . 

These operations transform the map to 

M = e:h:. .e:BN:T (13) 

where T is the transfer matrix for the linear lattice, 

and 

T=M~+~...hl~hl~ (14) 

gk(jil)=Ml.. .Mkfk(zl,yl)=fk(Mk .Ml(zl,yl)) 
(15) 

At this point we invoke the CBH theorem [3],[4]to combine 
the product of exponential operators into a single operator. 
It enables us to write 

e:tA, tB .c: 
e =e’ (16) 

where, up to fourth order in c, C is 

C= E(A+E)+${A,B}+${A-B,{A,B}} 

-&{K (4 (4 WI) + WC’) (17) 

Using this expansion the final form of the map can be 
written as 

M = e’G’T 
(18) 

where G is a polynomial in $, arranged in powers of the 
multipole coefficients (b,, a,). In principle we could go to 
higher order in the multipole strengths at the expense of 
computational time but our recent success with using 11th 
order Taylor maps for describing the SSC indicates that 
the non-linearities are sufficiently weak that including up 
to fourth order terms will more than suffice. 

The transfer matrix T is symplectic. It follows that the 
map M is symplectic irrespective of the order of the CBH 
expansion we use, since an exponential operator generates 
a symplectic mapping [5]. This is a necessary (but obvi- 
ously not sufficient) property required of a mapping that 
purports to represent a lattice accurately. 

IMPLEMENTING THE ALGORITHM 

In creating the map M, the lattice parameters have to 
be read in from an input lattice file. We use a thin lens 
description of the lattice written out on a file named Zfile 
by the program Teapot (61. It contains such information as 
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the bending angle and the horizontal focussing strength at 
the dipoles, scaled multipole coefficients which include the 
length of the element, the drift length to the next element 
and the misalignment errors. Once this is read in, the map 
is created step by step as follows. Let McL) be the map 
obtained up to the kth element, i.e 

J,,(k) = e:G’L’:T(k) 
(19) 

then at the (k+l)th step the map is 

,,,,(k+‘) = e:G We:g~+q-(k+l) 
(20) 

where 

sktl(iil) = - 
N 1 

$$R”c ;(b n,ktl + ia,,ktl)Z,;+,’ 
n=2 

zk+l = xktl + iyk+l 

Xktl = xc MZLK+l)T(k’)lj(ijl)j 

yktl MZLK+l’T’k’)~j(f~)j 

T(k+‘) = M$R+l)Mf;l)T(k) (21) 

and Mf$‘), Mgi’) are the linear kick and drift matrix 
respectively at the (k+l)th element. Before going on to 
the next element the two exponents G(‘) and gk+r are 
combined using the CBH expansion. 

The computationally intensive part of this procedure in- 
volves the calculation of the Poisson brackets in the CBH 
expansion. Due to the avalaibility of differential algebra li- 
braries such as DaBerz [7] and Zlib [8], it is now possible to 
carry out fast computations with polynomials and vector 
functions of polynomials. All the functions we calculate 
are polynomials of variables which are vectors in the space 
spanned by the components of the initial phase space vec- 
tor rjr . We have used Zlib for these computations. Another 
aspect of the implementation worth mentioning is that to 
speed up the computation of gk+r we use a method in- 
volving only multiplication of linear polynomials at every 
step. 

The necessity of limiting the computer memory used re- 
quires us to truncate the order of the polynomial for the 
exponent G. At present we have limited it to 10th or- 
der. This also limits the power of the higher order multi- 
pole coefficients retained, e.g. the coefficient bg retained to 
4th power would involve a 34th order polynomial but the 
truncation to 10th order implies that only the coefficients 
(bz,a2) and (ba,aa) are retained to the 4th power. Thus 
our perturbative series contains multipole coefficients to 
different powers, the maximum power(< 4) being deter- 
mined by the order of the multipole. 

We have implemented the above ideas in our program. 
Other issues which remain to be addressed are incorporat- 
ing the misalignment errors and efficient computation of 
the terms in the CBH series. Currently we are trying out 
this scheme on a test ring with the final goal of applying 
it to the SSC and also to the high energy booster (HEB). 
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