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Abstract 

A method for calculating 3-D space-charge forces has been 

developed that is suitable for bunched beams of ekther ions or 

relativistic electrons. The method is based on the analytic relations 

between charge-density and electric fields for a distribution with 3- 

D ellipsoidal symmetry in real space. At each step we use a 

Fourier-series representation for the smooth particle-density 

function obtained from the distribution of the macroparticles being 

tracked through the elements of the system. The resulting smooth 

electric fields reduce the problem of noise from artificial colhsions, 

associated with small numbers of interacting marroparticles. 

Example calculations ~111 be shown for comparison with other 

methods. 

I. INTRODLTCTION 

The repulsive space-charge forces in charged particle beams 

are responsible both for increased defocusing and for growth of the 

rms emlttances. For intense. high-brightness beams from rf linacs, 

It is Important to develop better methods for calculating these 

effects. The mam techmque used is to numerically follow the orbits 

of a large number of representative macropartlcles in their self- 

consistent fields. 

In principle the space-charge forces in a numerical simulation 

of a charged particle beam can be calculated by summing over the 

coulomb Interactions between point macroparticles. In practice 

this straightforward method falls because of the artificially large 

collisions that occur, because of both the enhanced charge nf the 

macropartictes and the artificially close encounters resulting from 

the step-by-step numerical integration with a finite step size. 

Several methods have been developed to calculate space- 

charge forces In linac beams. Subroutme SCHEFF[l] uses a 

particle in cell (PIG) method in which a 2-D r-z mesh is 

superimposed on the bunch. This method results In a set of source 

rings from lvhich the space-charge forces are calculated at discrete 

r-z mesh points. A disadvantage of this method is that it is 

restrlcted to those locations where the transverse beam cross 

section 1s round. Several versions Iof 3-D space-charge codes have 

been developed; a PIG routine, .LIAPROlI’LI, at CERN. and a 

method that replaces the point-to-point lnteractmns with 

tnterartlons between finite-sized spherlcal cloudsl31. 11 

disadvantage of these methods 1s that they are generally very time 

cnnsumlng ion the computer. 

One method for :3-D space-charge caiculations. developed by 

CERN and called M.4PR02[21, ~--as tn represent the macropartlcle 

distrlburlnn at each step by a contlnuc~us Gaussmn charge density 

lath ellipsoidal svmmetry from which the space-charge electric- 

field components could be c~alcuiatrd by numerical Integration. 

Although this approach leads to more raped computation, the 

restriction to a Gaussian profile is in principle not compatible with 

realistic distributions :n intense beams and could lead to 

inaccurate calculation ofspace-charge-induced emittance growth. 

In this paper \ve have generalized the XIAPROZ method to 

describe 3-D ellipsoidal charge densities of $)tberwise arbitrary 

shapes. We will describe the method and then show comparisons 

between our routine and (other esistmg routines. 

II. ELECTRIC FIELDS FOR AN ELLIPSOIDAL BIJNCH 

For an ellipsoldal charge distribution. the particle density 

(number of particles per cubic meter) can be expressed as a function 

of a single generalized coordinate t,, as 

, 11 

where a, b, and c are the rms dimensions ofthe distribution. and 

$21 

defines the lsodensity contours of the distribution. Equation (2) 

defines a family of concentric ellipsoids as t) varies from 0 to m. The 

advantage of the ellipsoidal distribution IS that thr electric field 

components can be expressed as a weighted Integral over the 

particle-density distribution. Once the rms dimensions a, b, and c 

have been calculated, the value of the generalized coordinate, to, 

can be obtained far any coordinates x,y, and z from Eq. ~2). 

The three components[3] of the electric !‘ield. caused by a 

distribution of charge q*, can be expressed in terms of the density 

as 

nct)ds 

b’ t 9 )“2( cL / 3 ,I 2 

., 
:vhere t 3 t (x, y, z, s) = Y” / (a2 + s) + yL’; lb’ + SI + z- /cc” + s), 

and analogous expressions are T:alld for E and E For the case of a 

spherical bunch, It is easy to show that Integration over s 

corresponds to an Intearatlon ov<‘r all the c,harge ;vlthin a radius x. 

If the particle density is known. then EX. E , and EL can be 

determined by numerical intrgratlon. The intrK:rai of Eq. 131 can be 

tnade numerically tractable by changing to a new variable, u. such 

rhat 

s=d’($l) , 
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where d = rabcl”” is chosen equal to the geometric mean of the rms 

beam sizes and is a scaling factor required to make the integral 

dimensionless and numerically well behaved. The integration 

limits of the field integral are then transformed into 0 and 1, giving 

the following new expression for the field: 

E< = 

In our treatment, the particle-density function, n(t), will be 

obtained from a distribution of macroparticles determined at a 

given time. The macropartlcle charge, q*, will be calculated from 

q* = I/Nf, where I is the average current in amperes, f is the bunch 

frequency in hertz, and N is the total number of macroparticles per 

bunch. The representation of the macroparticle charge density is 

described in the following section. 

III. FOURIER DESCRIPTION OF THE MACROPARTICLE 

CHARGE DENSITY 

Our assumption ofellipsoidal symmetry makes it necessary to 

describe the particle densitv, mto). only for values between to=0 

and T, Lchere T is the maximum to - value of the distribution. 

However, ifwe artificiaily extend the definition of the function n(t,) 

for t -values between -T and 0 such that n(-t ) = nrt ), then n(t ) 

beco’mes an even function about t =O. The denzity can;herefore d’e 

described as a Fourier series expinsion of the form 

P 
o(to) =s+ T- 

em 

2 PYl 
a( COSO;T s t,, 5 T 

T 

2 ..T ent 
ar = Tjo dtohIs+dto 
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Now we obtain a convenient expression for the Integral of Eq. 

(7). Consider the ellipsoid defined by Eq. t2), whose squared 

semiaxes are toat. t b’, and tee’). An element of volume inside the 

ellipsoid is given by” 

dV = Znabct~ dto . 18) 

If the density Iof particles is given by n(t”i, then the number of 

particles In a shell of thickness, dt?, is 

dN = atto) dV= 2nn(t0) abcr”2dt 0 0 

or rewriting, 

&V 
n(to) dto = 

Lnabc ty 

19) 

I101 

Equation 17) can then be approximated as a summation over all N - 

particles by 

=--&,f t-l’2 
fn t 

9 0 cos 2 
I-L T 

This method of describing the particle density results in a 

smooth distribution that can represent an arbitrary density profile 

(either hollow or peaked) with ellipsoidal symmetry. 

IV. NUMERICAL SIMULATION RESULTS 

A general purpose 3-D space-charge routine (SC3DELP). 

based on the analytic expressions given earlier, was written and 

incorporated into the beam dynamics code, PARMILA. A lo-point 

Gaussian numerical integration was used to determine the electric- 

ReldcomponentsfromEq. (5). Afive-term(e= 1 to 5)Fourier-series 

expansion was used to represent the macroparticle density. Figure 

1 shows both the actual charge density for a 1000 macroparticle 

input distribution and the Fourier-series representation for 

comparison. T is 9.86 for this distribution. 
,o .~- --I-.-~ LA. -A- I 1 

2T1---- T- 5 3 -~ 80 7.-- T---7--- 7 -.----~ 
10 13 3 1t 
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Fig. 1 - A comparison ofthe charge density for a 1000 macroparticle 
input distribution (dotted points) and a J-term Fourier series 
representation (solid line). 

Two comparisons were made between the predictions of 

SC3DELP and other space-charge routines. First, a comparison of 

results on emittance growth of an expanding spherical bunch[4] 

was made. A Gaussian spherical input distribution, truncated 

after three standard deviations, was generated with the following 

initial parameters: Win = 2 MeV, .\ = 70.5 cm (425 \IHz). input 

beam radius Irms) = 0.1 cm. and rms normalized input emittance, 

E n. !zlnF = 0.02 n-cm-mrad. The bunch was then allowed to drift for 

varying distances. The simulation results are given in Table 1. 

The output emittances are given as the ratio E ic and are 01.: ‘C 
averaged over the three planes lx, y, and ZI. Our method agreed 

well \vith the results of both the 2-D ring code, SCHEFF. and a 3-D 

point-by-point (cloud-to-cloudi calculation. A space-charge 

calculation was made for every l-cm step along the drift. For the P- 

D calculations, a IO-interval radial mesh of 0.05~cm step size was 

used. The same step sire, but :rrith 20 intervals. was used 

longitudinally. For the 3-D pnmt-by-point method, values of both 

0 5 and 1.0 for the ratit) of charge cloud diameter to Debye length 

were cried. achieving identical results. 

As n secnnd comparison, PARMILA simulations were run for a 

high-current drift-tube linac (DTLI design. The design consisted of 
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a 350-MHz, 3 to 35 MeV DTL incorporating a FOFODODO 
quadrupole-focusing scheme. Input current was varied (50-250 

mA, for fixed input emittances. Figure 2 shows the transverse and 

longitudinal emittances using both the 2-D routine, SCHEFF, and 

our method. SC3DELP. for I= 125 mA. Again. we observe that the 

two methods give comparable results; the largest observed 

discrepancy is about 28%. The advantage of SC3DELP over 

SCHEFF is that it can also be used in situations where the 

transverse beam profile is not round. A space-charge calculation 

was made once per DTL ceil. A 20 ~40) interval radial 

tlongltudinall mesh of 0.05.cm step size was used in the 2-D 

calculations. SC3DELP, agam, used a &term Fourier 

representation of the charge density. Increasing the number of 

Fourier terms (I= 201 had no apparent effect. 

Table 1 - 
Emlttance growth results for an expanding spherical bunch 
from simulations 

Beam 

Current 

I mA 1 

60 

250 

250 

I I - /~ fiverage kz Ic 
Jrift out I” 

Distance 

(Cltll 

100 

50 

100 

SCHEFF 
Point-by- 

SC3DELF 
(2-D) 

Point 

(3-D) 
13-D) 

1.13 1.14 1.13 

1.44 - 1.47 

1.59 - 1.66 

A rough comparison ofcomputer CPU time was also made, As 

expected, the required CPU time increased linearly with the 

number of macroparticles for a fixed number of Fourier terms used. 

Our 3-D method was 2-5 ttmes slower than the 2-D calculation for 

an equal number of space-charge calculations. The 3-D point-by- 

point calculation was approximately 15 times slower than our 

method. 
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Fig. 2 -Transverse and longitudinal emittances as a functlun ofcell 
number along a drift-tube linac from simulations ustng the 
tllfferent space-charge routines; A) SCHEFF, BI SCSDELP, CI 
SC‘HEFF. DI SC3DEI.P. 
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