© 1991 |EEE. Personal use of this material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers
or lists, or to reuse any copyrighted component of this work in other works must be obtained from the |EEE.

SPACE-CHARGE CALCULATION FOR BUNCHED BEAMS WITH 3-D ELLIPSOIDAL SYMMETRY*
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Abstract

A method for calculating 3-D space-charge forces has been
developed that is suitable for bunched beams of either ions or
relativistic electrons. The method is based on the analytic relations
between charge-density and electric fields for a distribution with 3-
D ellipsoidal symmetry in real space. At each step we use a
Fourier-series representation for the smooth particle-density
function obtained from the distribution of the macroparticles being
tracked through the elements of the system. The resulting smooth
electric fields reduce the problem of noise from artificial collisions,
associated with small numbers of interacting macroparticles.
Example calculations will be shown for comparison with other
methods.

[. INTRODUCTION

The repulsive space-charge forces in charged particle beams
are responsible both for increased defocusing and for growth of the
rms emittances. For intense, high-brightness beams from rf linacs,
it is important to develop better methods for calculating these
effects. The main technique used is to numerically follow the orbits
of a large number of representative macroparticles in their self-
consistent fields.

In principle the space-charge forces in a numerical simulation
of a charged particle beam can be calculated by summing over the
coulomb interactions between point macroparticles. In practice
this straightforward method fails because of the artificially large
collisions that occur, because of both the enhanced charge of the
macroparticles and the artificially close encounters resulting from
the step-by-step numerical integration with a finite step size.

Several methods have been developed to calculate space-
charge forces in linac beams. Subroutine SCHEFF[1] uses a
particle in cell (PIC) method in which a 2-D r-z mesh is
superimposed on the bunch. This method results in a set of source
rings from which the space-charge forces are calculated at discrete
r-z mesh points. A disadvantage of this method is that it is
restricted to those locations where the transverse heam cross
section is round. Several versions of 3-D space-charge codes have
been developed; a PIC routine, MAPRO1{2], at CERN, and a
method that replaces the point-to-point interactions with
interactions between finite-sized spherical clouds(3]. A
disadvantage of these methods is that they are generally very time
consuming on the computer.

One method for 3-D space-charge calculations, developed by
CERN and cailed MAPRO2[2], was to represent the macroparticle
distribution at each step by a continuous Gaussian charge density
with ellipsoidal symmetry trom which the space-charge electric-

field components could be calculated by numerical integration.
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Although this approach leads to more rapid computation, the
restriction to a Gaussian profile is in principle not compatible with
realistic distributions in intense heams and could lead to
inaccurate calculation of space-charge-induced emittance growth.
In this paper we have generalized the MAPRO2 method to
describe 3-D ellipsoidal charge densities of ntherwise arbitrary
shapes. We will describe the method and then show comparisons

between our routine and other existing routines.

[I. ELECTRIC FIELDS FOR AN ELLIPSOIDAL BUNCH
For an ellipsoidal charge distribution, the particle density
(number of particles per cubic meter) can be expressed as a function

of a single generalized coordinate t ., as

where a, b, and c are the rms dimensions of the distribution, and
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defines the isodensity contours of the distribution. Equation (2)
defines a family of concentric ellipsoids as t varies trom 0 to=. The
advantage of the ellipsoidal distribution is that the electric field
components can be expressed as a weighted integral over the
particle-density distribution. Once the rms dimensions a, b, and ¢
have been calculated, the value of the generalized coordinate, L
can be obtained for any coordinates x, y, and z from Eq. (2).

The three components(3} of the electric field, caused by a
distribution of charge q*, can be expressed in terms of the density

as
g*abex nit)ds
E . ="2¢ / K 2 g 12 g 12 3
° 91 a *8) b +s (c +3)

wheret = t(x,y,2,8) = Ciat v e+ 1/2 Sb? s+ 20+ s),
and analogous expressions are valid for E and E . For the case ofa
spherical bunch, it is easy to show that integration over s
corresponds to an integration over all the charge within a radius x.

If the particle density is known, then P)x‘ E.', and EJZ can be
determined by numerical integration. The integral of Eq. 131 canbe
made numerically tractable by changing to a new variable, u, such
that

s:dz(l-l) i 4)
u
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where d = tabc)'™ is chosen equal to the geometric mean of the rms
beam sizes and is a scaling factor required to make the integral
dimensionless and numerically well behaved. The integration
limits of the field integral are then transformed into 0 and 1, giving
the following new expression for the field:
-
E = S‘_;f:_x_ /01 niy ul?

In our treatment, the particle-density function, n(t), will be
obtained from a distribution of macroparticles determined at a
given time. The macroparticle charge, q*, will be calculated from
q* = I/Nf where [ is the average current in amperes, f is the bunch
frequency in hertz, and N is the total number of macroparticles per
bunch. The representation of the macroparticle charge density is
described in the following section.

[II. FOURIER DESCRIPTION OF THE
CHARGE DENSITY
Our assumption of ellipsoidal symmetry makes it necessary to

MACROPARTICLE

describe the particle density, ntto), only for values hetween t0=0
and T, where T i5 the maximum t - value of the distribution.
However, if we artificially extend the definition of the function n(t )
for t t - values between -T and 0 such that nt- t) = nt), then n(t )
becomes an even function about £ =0. The denslty can therefore be

described as a Fourier series expansmn of the form

a ©
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Now we obtain a convenient expression for the integral of Eq.
(7.
. 2.2 2
semiaxesaret a’, tb”, and t ¢

Consider the ellipsoid defined by Eq. (2), whose squared
An element of volume inside the
ellipsoid is given by

av = 2nabc:;’2 dt, (8)

If the density of particles is given by nit ), then the number of
particles in a shell of thickness, dt ,is

dN =t ) dV = 2nn(t ) abet' 4t
o 0 o

or rewriting,

dN
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Equation (7)can then be approximated as a summation over all N ~
particles by

11

This method of describing the particle density results in a
smooth distribution that can represent an arbitrary density profile
(either hollow or peaked) with ellipsoidal symmetry.

[V. NUMERICAL SIMULATION RESULTS
A general purpose 3-D space-charge routine (SC3IDELP),
based on the analytic expressions given earlier, was written and
incorporated into the beam dynamics code, PARMILA. A 10-point
Gaussian numerical integration was used to determine the electric-
field components from Eq. (5). A five-term (£ =1 to 5) Fourier-series
expansion was used to represent the macroparticle density. Figure
1 shows both the actual charge density for a 1000 macroparticle
input distribution and the Fourier-series representation for
comparison. Tis 9.86 for this distribution.
104,
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Fig. 1 - A comparison of the charge density for a 1000 macroparticle
input distribution (dotted points) and a 5-term Fourier series
representation (solid line).

Two comparisons were made between the predictions of
SC3DELP and other space-charge routines. First, a comparison of
results on emittance growth of an expanding spherical bunch(4]
was made. A Gaussian spherical input distribution, truncated
after three standard deviations, was generated with the following
W_ 2 MeV, A=70.5 cm (425 MHz2),

beam radius (rms) = 0. 1 c¢m, and rms normalized input emittance,

initial parameters: input

R = 0.02 n-cm-mrad. The bunch was then allowed to drift for

varying distances. The simulation results are given in Table 1.

The output emittances are given as the ratio ¢ o ./Sm and are
averaged over the three planes (x, v, and z). Our method agreed
well with the resuits of both the 2-D ring code, SCHEFF, and a 3-D
point-by-point (cloud-to-cloud? calculation. A space-charge
calculation was made for every l-cm step along the drift. For the 2-
D calculations, a 10-interval radial mesh of 0.05-cm step size was
used. The same step size, but with 20 intervals, was used
longitudinatly. For the 3-D point-by-point method, values of both
0.5 and 1.0 for the ratin of charge cloud diameter to Debye length
were tried, achieving identical results.

As asecond comparison, PARMILA simulations were run for a

high-current drift-tube linac (DTL) design. The design consisted of
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a 350-MHz, 3 to 35 MeV DTL incorporating a FOFODODO
quadrupole-focusing scheme. Input current was varied (50-250
mA) for fixed input emittances. Figure 2 shows the transverse and
longitudinal emittances using both the 2-D routine, SCHEFF, and
our method, SC3DELP, for [ =125 mA. Again, we observe that the
two methods give comparable results; the largest observed
The advantage of SC3DELP over
SCHEFF is that it can also be used in situations where the

discrepancy is about 28%.

transverse beam profile is not round. A space-charge calculation

was made once per DTL cell. A 20 (40) interval radial
tlongitudinal) mesh of 0.05-cm step size was used in the 2-D
calculations. SC3DELP, again, used a 5-term Fourier

representation of the charge density. Increasing the number of

Fourier terms (1=20) had no apparent effect.

Table 1 -
Emittance growth results for an expanding spherical bunch
from simulations

Average emm/ﬂx
Beam Drift .
Current Distance SCHEFF Point-by- SC3DELP
Point
(mA) {cm) (2-D) 13-D)
(3-D»
60 100 1.13 1.14 1.13
250 50 1.44 — 1.47
250 100 1.59 — 1.66

A rough comparison of computer CPU time was also made, As
expected, the required CPU time increased linearly with the
number of macroparticles for a fixed number of Fourier terms used.
Our 3-D method was 2-5 times slower than the 2-D calculation for
an equal number of space-charge calculations. The 3-D point-by-
point calculation was approximately 15 times slower than our
method.
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Fig. 2 - Transverse and longitudinal emittances as a function of cell
number along a drift-tube linac from simulations using the
different space-charge routines; A) SCHEFF, By SC3DELP, C)
SCHEFF,D)SC3DELP.
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