
DIMAD Based Interactive Simulation of the CEBAF Accelerator*

M. H. Bickley and D. R. Douglas

Continuous Electron Beam Accelerator Facility
12000 Jefferson Avenue

Newport News, VA. 23606

R. V. Servranckx
TRIUMF

4004 Wesbrook Mall
Vancouver. B.C. V6T243

ABSTRACT

An X-WindowsTx based interactive interface to the
DIMAD beam optics programl’l enables users to simulate
the adjustment of magnets in tuning various segments of
the CEBAF beamline. In addition, users can track the
effects of random errors on the path of individual particles
as magnets are adjusted. The interface sits on top of the
standard DIMAD model, retaining the detailed modeling
available with that code. Because X-Windows software
was used, the code is portable to any system that has X-
Windows and the X-Windows Toolkit available. We give
results from the studies simulating the extraction portion
of the CEBAF beamline.

INTRODUCTION

The computer program DIMAD is a w&!y used tool
for the analysis and design of particle beam transport sys-
tems. The standard model possesses an interface that al-
lows users to interactively vary the values of hardware pa-
rameters and view the resulting measurements taken at
selected beam monitors in the beamline being simulated.
Users enter data by typing characters at a keyboard.- The
characters are used to select options from a menu, to add
incremental values to hardware parameters or to change
the size of an increment. The output is alphanumeric, dis-
playing a histogram indicating the measured beam values
at the monitors. The existing alphanumeric interface is
limited in several respects: The entering of data is not in-
tuitive. The display has low resolution. The interface is
hardware-dependent, requiring recoding whenever a new
kind of terminal is used.

A new graphical interface was needed to remedy these
shortcomings. The software to accomplish this has been
implemented and is discussed in the following.

‘Supported by D.O.E. contract #DE-AC05-84ER40150

o-7803.0135-8/91$01.00 @IEEE

DESIGN AND IMPLEMENTATION

Design Goals

The new interface was designed with five goals in
mind:

1)

2)

3)

4)

5)

Retain all functions of the old DIMAD interface. This
assures that all required features will be available and
users of the previous interface will have little difficulty
with the new one.

Make the interface hardware-independent. This is
done to simplify software portability and installation
efforts. It allows usage on a wide variety of machines.
This goal requires a standard software base, so C and
X-windows were selected for their near-universal avail-
ability on workstations.

Provide an interface that is as easy to use and as in-
tuitive as possible. Try not to burden the user with
insignificant details about using it.

Limit the changes to DIMAD. Given the fact that
there are many different versions of DIMAD, try to
limit the work required to make any version compati-
ble with the new interface. This also keeps the inter-
action between DIMAD and the interface small and
well-defined.

Use modular coding
work associated with
interface.
The entire process,
through testing and
three man-months.

techniques. Simplify any future
the extension or alteration of the

from design to implementation
debugging, took approximately

Changes to E&sting DIMAD Code

There were three phases of implementation of the new
interface with respect to the standard DIMAD code. First,
the raw information to be displayed was gathered and or-
ganized. Second, the flow of control was directed to the
new code to display the graphical interface. Third, user
input from the interface was interpreted and the appro-
priate functions executed by DIMAD. Each of these steps,
outlined below, required very little modification to existing
code.

Accomplishing the first phase required the construc-
tion of a data structure to hold the DIMAD data needed
by the interface. The raw data was collected by identifying

309

© 1991 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1991

code locations in which the data had already been calcu-
lated or else was available from the processing of other
data.

The second phase was simple to implement. Since
an interactive interface was already in existence, the new
interface required only that it be initialized and that the
flow of control be directed to the new code.

The third phase wu the most difficult with respect
to designing the interface. The new software requires
the reconciliation of two disparate coding techniques-
FORTRAN’s linear programming and X-Windows’ event-
driven structure. This conflict was resolved by taking
advantage of the availability of FORTRAN recursion on
workstation-class machines. This enabled all DIMAD
functions executed by the new interface to be retained in
the same single subroutine in which they were implemented
for the old alphanumeric interface. The alternative would
have been to break the single routine into many pieces,
with each piece responsible for one type of user input from
the new interface.

New Code Using X-Windows

Building the graphical interface required the use of
all of the levels of abstraction available with X-Windows.
The code was implemented by utilizing the highest level
possible for each segment, minimizing the programming
work. This means that Motif, the highest level, was used
to implement widgets such as buttons, toggles, scales and
labels. These standard widgets were extended when neces-
sary. For instance the Motif scale was not flexible enough
for the purpose of setting hardware parameters, so sev--
eral Motif buttons and labels were added to make a more
“intelligent” widget.

At a lower level of abstraction, the X-Intrinsics were
used for managing the various windows and widgets as
much as possible. This served to minimize programming
work by relying on the particular implementation of X-
Windows to handle these objects.

At the lowest level, managing the graphical windows,
X-Library functions were used. The lines and characters
in these windows are each explicitly drawn by the interface
software, so they must be handled at the most basic level.

The implementation and testing of the new
X-Windows code consumed the majority of the time
needed to create the new interface.

TESTING THE SOFTWARE

The interface software was tested by simulating a very
simple beamline which consisted of six ten-meter drifts al-
ternated with simple dipole correctors and beam monitors.
The Ubeamn was made up of twenty test rays. Initially, the
beam centroid at the monitors was very close to zero. The
non-zero values are a function of the statistical popula-
tion of the beam with energies and positions. The beam
width at the monitors increased linearly. As small changes
were made to the strengths of the correctors the beam
centroid as indicated by the graphical display would bend

an amount equal to that calculated independently. Fig-
ure 1 shows the horizontal beam centroid values measured
at monitors in the beamline. In this example a horizontal
corrector immediately after the second monitor has been
given a small positive value.

The angle of deflection was measured, and it was iden-
tical to the expected value given the strength of the cor-
rection.

Further tests using the simple case showed the deflec--
tion from a corrector could be exactly compensated for by
giving a corrector further down the beamline a strength
equal to and opposite in sign from that of the first cor-
rector, resulting in a beam centroid that traveled parallel
to the beam centerline. The effects of the correctors con-
tributed additively, as expected. Also as expected, the
beam width was not affected by changes to the strengths
of the correctors-no focussing effects were being modeled.

The same basic beamline was used for testing the mea-
surement of focussing. By adding a quadrupole to the sim-
ple beamline it was demonstrated that focussing effects of
magnetic elements were accurately reflected by changes i2
the beam width.

X Centroid Valuezfj fj 2,0e-02

1 CQ

I
I I

1’1 1’1 1’1 II 1’1

1 l-q

m El El El
-2.Oe-02.

Figure 1. Test of the interface software

EXAMPLE PROBLEM

The new software was used in the analysis of the ex-
traction region of the CEBAF accelerator. The purpose
of the study was to determine the strengths required for
two septa in order to attain an extracted beam offset of 20
centimeters, and to verify that the clearances of the beam
and the septa were large enough. The beamline being sim-
ulated included the 80 meters of line upstream of the thin
septum, and the 35 meters downstream of the thin septum.

310

PAC 1991

The analysis was performed by giving each magnet in.the
line random misalignments, where the magnitude of the
misalignments was based on a gaussian distribution whose
sigma was equal to the sigma predicted for the real CE-
BAF magnets after installation. The simulation included
an RF separator element, which took each test ray and
created two new ones with identical characteristics. One
of the two rays was given a positive horizontal kick and
the other was given a negative horizontal kick, generating
two beams downstream of the RF separator where there
was only one beam prior to it.

The above procedure was followed repeatedly ten
times (with a different starting random number seed for
each), and the results displayed on the graphics screen.
Figure 2 is a hard copy of the results of the simulation.
The thin septum is represented as a thick vertical line with
a gap through which the upper portion of the beam passes.
The magnification of the display is such that only the wall
of the thin septum is shown. The resolution is high enough
that each test ray trajectory is discernible.

Figure 3 shows the same length of simulated beamline,
however the magnification has been changed so that the
beam can be seen clearly passing through the thick septum.
Here the resolution does not permit distinguishing separate
trajectories, however the envelope of the paths shows that
the beamline safely passes both septa.

-2.oe-02

Figure 2. Close-up view of the extraction region

CONCLUSIONS

The substitution of the new interface for the old was
a simple process in this case. If the old interface had been
spread out among a number of routines the implementation
procedure would have been more complicated, but even so
would have been straightforward in execution.

In general, the benefits of a graphical interface be-
come less and less important as the response time of the
software increases and users must wait too long for the re-
sults of iterative changes. The response time is quite good
for DIMAD used with this interface. Our typical analyses
use 100 to 500 beam elements in the line and 20 to 100
test rays in the beam. The response time on a DECstation
3100 is well under a second in the best cases to about ten
seconds in the worst. At its worst, the response is still
quite adequate and allows a painless level of interactivity
with the model DIMAD.

ACKNOWLEDGMENTS

We would like to thank Dr. Richard York for initiating
the development of this software.

REFERENCES

[l] R. V. Servranckx, el al., “User’s Guide to the Program
DIMAD,” SLAC Report 285 UC-28, May 1985.

X Centroid Values 16-

2

-1,6e-

Figure 3. Beam passing cleanly through septa in the
extraction region

311

PAC 1991

