
RECOVERINO PHASE DENSITY DISTRIBUTION FROM LINE DENSITY * 

Joseph PI. Kats 

Erookhaven National Laboratory 
$41 ternating Gradient Synchrotron Department 

Associated Universities, Inc. 
Upton Y New 

Abstract 

We present an algorithm to 
recover the longitudinal density 
distribution of the particles in a 
stationary bunch I from the 
experimentally obtained 1 ine 
density . This algorithm can be 
used as an alternative to the 
analytical theory. 

I. Introduction 

The knowledge of particle density 
distribution in longitudinal phase 
space is important for the study 
of various instabilities and for 
computer simulations, which always 
start from an assumed initial 
distribution. This initial density 
profile should be as close to 
experiment as possible. 

In phase space any particle 
is characterized by its energy E 
and phase angle cp, while den5i ty 
is 5ome function (i=p(E,cp) which 
can also depend cn time t. 
Experimentally we can not directly 
observe phase density distribution. 
What we see is the line densit\./ 

3\fGp) which is an integral of ; 
over al 1 particles with the given 
phase angle 'p : 

E 7n3 
h(q) = j- p(E.+E - (1) 

%ilY 
Thus F the problem arises: how to 

recovtw unknown phase densZtv 
dCstrCbutCon p(E, ) from the gtven 
I ine density h(cp ? 

Generally speaking, this problem 
has no unique solution. However, 
there are practical cases where 
a unique solution p can be found - 
A review of some cases along with 
analytical theory is found in Cl]. 

In this pap-- we deal with a 
stationary bunch where its local 
density, pI can be reduced to the 
function of the Hamiltonian H: 

~=dEdp)=dH) (2) 

for which the line density is an 
even function: 

u-qd=ap). (3) 
We will work in the dimensionless 
phase space (BE,(P) with normalized 
energy 6E=(E-Eo)/AEoand normalized 
time %=QOt measured in synchrotron 
periods; AE 
of the bucket-O 

is the half-height 
The Hamiltonian of 

motion below transition energy for 
the stationary bunch is 

W6E,O = - 82 - Sin'((p/2). (4) 

II. The Building Blocks 

The recovering algorithm is 
composed of a number of steps. 

Each step consists of several 
bzocks:Bl,BZ, m m. Below we describe 
each block, 

BI.The grtd 
In phase space ( ‘Pi 8E) a bunch 

of length 2r and of height 2CZE, 
can be inscribed into a rectangle 
of size 2rx26Eb. Let M,N be any 
integer , L=MV and 

hr=; F h" ch; ~ (51 
* 
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Then introducing a grid 

c&=&c y C=o,fi.+z,. . . ,a, 

Ej=$.f ~ j=o,fi,kZ,. . . ,fZL, 

(61 

(71 

we will cover the bunch area by 
small rectangles ‘R. whose 
vertices are (cpi ,.EJ I. LJ 

B2. T7w rZngs 
We now break the bunch into N 

elliptic-like rings &, bounded by 
two closed trajectories 6E,((pI and 
and 6Ek-* ( ‘p) ‘I k=k&. . - .N . 

/ BE,=+ Sin 
2% .2q 

2 -Gin ~~--'p kbcpbqk (8) i 

cpk=--r +hX*k 3 k=o,:,. . . ,M. (91 

B3. Random pm%cZes 

t&Jithin any rectangle 2 we can 
choose a random (par-ticlhJ point 
P =P (cp i,Ej I with coordinates 

f 

qc=(pL+ h” a RND ( i j ? 
110) 

6EJ=6Ej +hY.RNJN&, 

where RND is a generator of random 
numbers homogeneously distributed 
between 0 and 1: 

o<RND<i - 

B4. The rtng cover2ng 
!ll) 

For any ring & we can find all 
rectangles, R ,iktersectinq that 
ring. We denoie those rectangles 
with a bar: 

FzJ =rjn q f $3 . (12) 

Applying to all such rectangles 
block B3, we find a set of random 
particles. Some of these particles 
lie within the ring &,, others lie 
outside. Those which do lie in &k 
should satisfy: - 

Sinzit7”-l 
2 

@Z+Sin 
‘p % 2 . 

J 
Z,L,<Sin 2 y (13) 

where cp,is determined by (9).Those 
particles which don’t satisfy (13) 
should be discarded from further 
treatment. As a result, the ring&k 

will be covered by the set of the 
particles whose density is almost 
(approximately) homogeneous. 

We call rCag cower this procedure, 
which leads to establishing a set 
of particles for the given ringCk. 
An arbitrary ring Ekis composed of 
small rectangles 'R. many of which 
are cut by the r:Ag boundaries. 
Such rectangles are truncated 
contrary to fuZZ rectangles which 
are not truncated. 

The result of the ring covering 
is that the every full rectangle 
contains o?ze particle, while some 
of the truncated rectangles may 
contain 07ze or 7M)ne. 

Subject to the covering procedure 
we will d note a one-foZd 
ring as F 

covered 

Applying I!- . his procedure g times to 
the same ring we will get a q-fold 
covered ring with the homogeneous 
particle distribution of higher 
density . The homogeneity of the 
distribution is approximate due to 
the truncated rectangles lying 
along two borders of the ring. 

85. The projectton 
Along with the set of rings, we 

need some construction connecting 
those rings with the line density. 
The latter is usually obtained 
experimentally as a table. We will 
assume we have an interpolating 
algorithm able to evaluate h(cp)for 
any ‘p within --f 6 cp 6 v 5 where f 
is the bunch half-length. 

As we have seen, al together we 
have N rings covering the bunch. 
Let’s consider k consecutive rings 

Ck<M>. Some of them can be covered 
by particles as was described in 
block B4. So we have ring sequence 

4, Ef’, 2 5 ---11 E, ? 4, au- (14) 

Any ring, Z, has two boundary 
curves I intersecting the axis (p in 
two pairs of symmetrical points. 

On the left-hand side of cp=O 
consider thek-th ring intersection 
with axis cp, where cp=‘pkql and (P=CQ 
are both taken from (9). Drawing 
through these points two vertical 

3M 

PAC 1991



lines+? we will intersect the bunch 
as well as line density graph. Now 
let's find out how many particles 
of the bunch lie between the two 
verticals. These particles come 
from all k rings.Suppose the total 
number of these particles is N . 
If the density distribution whigh 
was created within the bunch were 
exactly the c,ame distribution as 
that from which the experimental 
h(cpj was taken y then we would have 

Nk =Lz, z where 

% 

s hIrp!dq = Lk - (15j 

yk-i 

The algorithm in question is aimed 
to generate aparticle distribution 
which makes the integral in (15)as 
close to Nk as possible: 
Our goal is 

Lk z Nk . 

for 
to evaluate Lk and NkF 

subsequent comparison using 
other branches of the algorithm. 
We will assume that along with the 
interpolating algorithm for h we 
also have an integrating algorithm 
to compute any Lk from the given h. 

Thcrs all Block 5 requires is to 
calculate LkFNk for any given k. 
We call this process in proJectCon. 

III. The algorlthm 

stepi: Choose M,N. 
Stepa: B1. Define rectangles R, . 
Steps: B2. Define M rings E, k!th 

k=1,2,...,M. 
Step4: Put k=l. 
StepS: B4. Cover & I B5. Get Lk9Nk. 
Stepd: If k=l then’put k&T!, go to 

StepS. If k # 1 then go to 
step7. 

Lk Nk 
SteP7: Check : Cr +r - 

k-1 ’ y-1 ’ 

where -95<cr6.9a is a corrector, 
which is supposed to partially 
compensate the errors due to 

truncated rectangles-The corrector 
is determined experimentally after 

2-3 runs of the algorithm. 
Step8: If Step7 is false then goto 

Step5 r if Step7 is true, then 
go to Step9. 

Step9: If k=M, then go to SteplO, 
otherwise set k=k+land goto Step'l. 
SteplO: STOP:The job ic, done. 

Figure 1 illustrates four cases 
for which algorithm was applied. 

cl.= .95 

-0.9radians 0 e.9 

Nutcl= 10566 “Z 8 

cr= .98 

-B.qradians 0 0.9’ 

Cr= .95 

Figure 1. Line density h-sol id, 
local density pzdotted Y and 

line density h-dashed line. 

CIfter all the particles have been 
deposited in the bunch according 
to the algorithm, we use the newly 
created bunch to reconstruct the -- 
line density h=h(cp) shown by the 
dashed line. This gives us an 
indication of the accuracy of the 
algorithm. The local density 
distribution, p: was computed by 
direct counting of the particles 
near the Taxis. For stability 
studies, this p-distribution needs 
smoothing treatment. 
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