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A bstmct - A new orbit-dynamics code, DACYC, is be- 

ing developed for the TASCC superconducting cyclotron. 

DACYC makes use of differential algebra and Lie Alge- 
bra. to calculate and analyze partial, one-and/or multi-turn 

maps to very high order. Accurate, three-dimensional, an- 

alytic models of the magnetic and RF fields are used, which 

satisfy Maxwell’s equations exactly. The maps can be an- 

alyzed with norm&form methods or to produce linear or 

high-order phase-space plots. 

I. INTRODUCTION 

Although cyclotrons are only quasi-periodic devices un- 

der operational conditions, the use of maps is still a very 

efficient way of exhibiting and analyzing important orbit- 

dynamical features, especially resonances. A new or- 

bit dynamics code, DACYC, is being developed for the 

TASCC [l] superconducting cyclotron. DACYC makes 

use of the powerful symbiosis of differential algebra [2] 
(DA) and Lie Algebra [3] to calculate and analyze partial, 

one-and/or multi-turn maps to very high order. The Lie- 

algebraic formulation of Hamiltonian mechanics provides 

powerful methods for representing and analyzing maps, es- 

pecially the transformation to normal form, but requires 

that the coordinates be canonical. Thus, we integrate 

Hamilton’s equations directly. 

The high-order Taylor-series map (the usual aberration 

expansion) is very efficiently computed from Hamilton’s 

equations with differential algebra, but the Lie map is not. 

Fortunately, DA provides, through its ability to compute 

high-order derivatives with high accuracy, efficient means 

for converting the Taylor-series map into a Lie-map when 

desired. However, for DA techniques to be used, the equa- 

tions of motion and the electromagnetic potentials must 

be in analytic form. 

II. EQUATIONS OF MOTION 

The relativistic Hamiltonian in cylindrical coordinates, 

the “natural” coordinate system for cyclotrons, is [4] 

H=-pAe-p 

L 
2 

m2c2- (PI - Al)’ 

(1) 
where H is the negative of the canonical momentum con- 

jugate to 8, 8 is the independent variable, p is the radius, 

PT is the total energy, cp is the electromagnetic scalar po- 

tential, and PI and Al are the transverse components of 

the momentum and the electromagnetic vector potential, 

respectively; Ae is the azimuthal component of the vector 

potential, m is the particle mass and c is the velocity of 

light. Hamilton’s equations in Poisson-bracket form are: 

i = -[H, 21, (2) 

where 2 = (p, Pp, 2, Pz, Z’, PT), are the canonical coordi- 

nates, and the dot denotes differentiation with respect to 

8. Eq. (2) is expanded in a Taylor series via DA [5], and 

the resulting DA ‘vectors” are integrated numerically by 

a Bulirsch-Stoer integrator [6]. The result is the reference 

trajectory in cylindrical coordinates, along with the usual 

Taylor-series map, or aberration expansion, 

(/IN L= &j(iN + zjk(:NCfN + * ’ ’ (3) 
where the elements of C = (t, pz, z, pz, t, pt), are the canon- 

ical coordinates relative to the reference trajectory; re- 

peated indices are summed. The superscripts, IN and 

FIN, refer to the initial and final coordinates connected 

by the map. The order of the map (3) is determined at 

run-time. Eq. (3) plus the reference trajectory are suffi- 

cient if we are interested only in simple phase-space plots 

and/or the behavior of the reference trajectory. For the 

study of non-linear behavior, in particular resonances, we 

transform to the Lie representation [3]. 
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III. MAGNETIC FIELD REPRESENTATION 

For DA to be used, the vector potential, A, must be in 

analytic form. We have constructed a 3-dimensional ana- 

lytic model of the magnetic field which satisfies Maxwell’s 

equations exactly. The model is divided into four parts: 

l 1. the field from the coils; 

l 2. magnetization of the iron poles; 

l 3. “fields” from the trim rods; 

l 4. residual field (perturbations). 

The vector potential of a pair of circular loops of radius 

a carrying a current Ican be written in the form 

J 
00 &(a, b) = wol e-b’Jl(ps).71(os) cosh(zs) ds (4) 

0 

where jz] < b; 2b is the spacing between the loops. We 

integrate (4) over the area of the coils by partitioning the 

coils and making a moment expansion about the center 

of each cell. The moments can be obtained by recursion 

from two elliptic integrals. The preceding method greatly 

reduces the computing time over a “brute-force” integra- 

tion of (4). Furthermore, the derivatives of A@ may also 

be obtained recursively to any order and “poked” into the 

appropriate DA vector. 

The vector potential from the saturated iron poles can 

be obtained from a polygonal current-sheet approximation. 

By Ampere’s law, the vector potential of a current loop I” 

is: 

A(r) = ti P 
1 

~ da’, 
4LT p If - S’I 

where r is the field evaluation point, t’ is a point on I”, 

and da’ is a line-element of I? at 7’. Choosing i” to be a 

planar polygon, and integrating (5) with respect to z’ from 

-co to -b and b to 00 (where b is the gap), we obtain an 

expression involving only log and arctan, both of which 

can be differentiated in DA. 
Each hill and valley region is represented in this model. 

The hill edges are “softened” by the addition of line distri- 

butions of magnetic dipoles, which help to fit the details 

of the hill fringe-field region. A least-squares fit of items 1 

and 2 of this model to the measured midplane field is shown 

in fig. 1. The quality of the fit is quite impressive; the RMS 
error in fig. 1 is already only 0.237%, and we expect this to 

be reduced even further by additional refinements to our 

model. 

The TASCC cyclotron [l] uses 104 saturated iron “trim- 

rods” instead of trim-coils to fine-tune the magnetic field. 

PERCENT RESIOURL 

F’ qquc 1: Percent deviation of the fitted magnetic field from the mca- 

ared mid-plane magnetic field; dotted (dashed) linea denote p&tin 

(negative) contours, respectively. Contours arc #paced 0.2% apart. 

The heavy solid line outline8 the “hill” boundary. 

The potential of each trim-rod pair may be represented 

either by a current-sheet approximation or a multipole ex- 

pansion. The most computationally efficient representa- 

tion has not yet been determined. 

The residual field, AB, = (B,,,,. - Bmo~er),, is the 

difference between the measured mid-plane field and the 

model field and includes perturbations from yoke penetra- 

tions, extraction elements and their compensation bars. 

The residual field will be fitted to a Fourier-Bessel series 

derived from a Herte potential I7. For the static case, 

V211 = 0, A = V x Ii, and B = V x (V x II). We can 

choose a gauge such that 17 = wk, where k is the unit vec- 

tor in the z direction. This leads to a simple relationship 

between the mid-plane field and w. 

The magnetic field model outlined above provides a 

full 3-dimensional description of the field that satisfies 

Maxwell’s equations exactly. This includes not only the 

acceleration region between the poles, but the fringe-field 

region out to the vicinity of the yoke wall. 

IV. RF-FIELD REPRESENTATION 

Due to peculiarities of the RF cavity design, there are 

distributed vertical components of the electric field. Thus, 

the usual kick approximation cannot be used. We use a 

Fourier-Bessel expansion for the RF field, derived from 

a dynamic Hertr potential. Because the geometries of 
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the magnetic and RF elements are very similar, the same 

trigonometric and Bessel functions are used, involving very 

little additional computation. 

V. LIE-ALGEBRAIC ANALYSIS 

The Taylor series map (3) can be transformed [3] into a 

product of Lie-maps 

M = M2M3M4..- (6) 

where each of the factors M, is generated by an n th-order 

homogeneous polynomial - called Lie-polynomiaLc - in 

the canonical coordinates C; Mz is equivalent to R, and 

MJ to T in (3). The Lie-polynomials provide a much more 

concise representation of the map than (3); furthermore, 

the Lie maps in (6) preserve the symplectic nature of M 
exactly, whereas the Taylor series (3) does not. With the Figure 2: Projection of the reference trajectory on the vertical plnne 

help of DA, (6) can be transformed into normal fopm [3] 
as I). function of azimuth. This figure illustrates the effect of the 

vertical componenta in the RF field. 

VERTICAL DEFLECTION 5 TURNS 

.- -- 
0 8 1osr 

M=A-‘MA (7) 
may not remain true when the beam passes through reso- 

where n/, the normal map, now takes its “simplest” form, nances, and is already known not to be true in the vicinity 

containing only tune-shift and resonance terms. A is the of the Walkinshaw resonance, which is encountered near 

non-linear canonical transformation connecting M with the extraction radius. 

h/. That we can incorporate all the other non-linearities 

into A makes the analysis of the tune-shifts and resonances REFERENCES 
much easier! The Lie-algebra library DALIE of Forest [7] 

is used for this analysis. [l] H. Schmeing, et al., Current Status of the Supercon- 

ducting Cyclotron at Chalk River, Z’welflh Int. Con& 

VI. EXAMPLE 
on Cycl. and their Appi., Berlin, 1989. 

[2] M. Berz, Differential Algebraic Description of Beam 
A simplified model of the magnetic and RF fields, valid Dynamics to very High Order, Part. Accel. 24 (1989) 

only near the inner region of the cyclotron, has been used 109. 
to study the effects of the vertical components present in 

, 
the RF field, especially in push-pull, or %-mode”. Cal- [3] E. F orest, M. Berz and .I. Irwin, Normal Form Meth- 

culations of the first 5 turns in the cyclotron (in order to ods for Complicated Periodic Systems, Part. Accel. 24 

include one complete betatron oscillation in the vertical (1989) 91. 

plane) were performed through second-order aberrations 

(MS or T) for 35Cl at 30 MeV/u. The effect on the refer- 
[4] W.G. Davies, Useful Forms of the Hamiltonian for Ion- 

ence trajectory is shown in fig. 2. These results are quite 
Optical Systems, AECL-10364, 1991. 

sensitive to the details of the RF field, and especially to the [5] S.R. Douglas, Automatic Differentiation of Functions, 
RF phase when the beam passes through the carbon strip AECL-10139, 1990. 
ping foil at injection (see ref. 1, and references therein). 

From the “first order” map, R, we find that the radial and [6] R. Bulirsch and J. Stoer. Numerical Treatment of Ordi- 

vertical tunes are v, = 1.006, and v, = 0.227, in agreement nary Differential Equations by Extrapolation Methods, 

with measurement. In spite of the fact that the vertical RF Num. Math., vol. 8, pp. 1-13, 1966. 

field components break midplane symmetry and mix the [7] l?. Forest, (private communication). 
z and .z planes, the extra nonlinear couplings do not ap- 

pear to have deleterious consequences at inner radii. This 
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