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Abstract 
Particle tracking simulation studies of the beam-beam 

interaction (BBI) in circular colliders require large amounts of 
CPU time to determine particle distributions out to large 
amplitudes. This is due to the limited number of superparticles 
simulated and the rarity of correlated events which can drive a 
particle to such amplitudes. An alternative approach for 
determining the final particle distribution out to large 
amplitudes is explored. The method employs a combination of 
particle tracking over selected regions of the amplitude space 
followed by the solution for the equilibrium distribution of the 
particle flow through this space. The technique is described and 
preliminary results, when applied to the two-dimensional case, 
are given. 

I. INTRODUCTION 
Poor beam lifetimes caused by the BBI limit the peak 

luminosity performance in many e+e- colliding beam machines. 
The highly nonlinear periodic kicks from the BBI can 
resonantly drive some particles to very large oscillation 
amplitudes, amplitudes so great that these particles strike a 
machine aperture limit and are lost from the beam. However, 
cvcn in cases where the beam lifetime may be considered 
unexceptably low (I 10 min.) the fraction of particles actually 
lost during 1 damping time is very small and is of the order 
AN/N = (damping time)/(lO min.) = 10m4 -> 10e5 for typical 
machine parameters. This implies very low beam densities at 
these amplitudes. 

One method of studying the ails of colliding beam machines 
is by using particle tracking simulations. Although this 
method has been reasonably successful at describing the central 
core region of the colliding beams, because of statistics it is 
severely limited in its ability to simulate the low particle 
densities seen at very large amplitudes. Due to this limitation 
the method requires large amounts of computer time to be useful 
at predicting lifetimes > 1 minute. 

An alternative to standard particle tracking is suggested by 
observation of a particle’s oscillation amplitudes projected onto 
the transverse amplitude space. Most notably the works of 
Tennyson [l] (resonant streaming) and Gerasimov [2] (phase 
convection) have been very thought-provoking, as well as a 
novel tracking technique recently used by Irwin [3]. Their 
results show that the nonlinear beam-beam resonances perturb 
the amplitude space in such a way as to produce very correlated 
flows within the space. 

There is no reason a simulation should be blind to the large 
amplitude motion and flow of particles. By selective sampling 
one can determine the behavior of the particle flow over the 
entire transverse amplitude space out to arbitrary amplitudes. 
With this knowledge one can then apply a suitable updating 
process to bring an initial distribution into equilibrium. We 
have designed a simulation which does this. It first tests how 
the BBI, damping and quantum excitation redistribute particles 
in the amplitude space. Using these “redistribution rules” an 
arbitrary initial pseudo-continuous particle distribution is 
updated until the distribution has relaxed to a stationary state. 
The final particle distribution and flow through the space is then 
used to determine beam lifetimes as a function of the aperture 
location. 

It will be assumed throughout that the reader has a basic 
understanding of standard accelerator physics, the BBI problem 
and their associated terminology at the level of Sand’s [4]. For 
clarity, the initial evaluation of the method has been restricted 
to a study of the weak/strong 2-dimensional BBI (transverse 
coordinates only) in electron storage rings. Here, only the 
basics of the method and some preliminary results are given. A 
more thorough treatment will be made available in the near 
future [5]. 
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II. DESCRIPI’ION OF THE METHOD 

Testing the Amplitude Space 
The first phase of the simulation uses standard particle 

tracking to sample the motion of particle amplitudes at discrete 
points in the amplitude space. Let j3’ (the longitudinal variation 
of the machine beta function) be zero at the observation point 
of the particle. The following definitions of the dimensionless 
particle coordinates and amplitudes are used. _ _ 

A- = A,cosO, ; z = A,sinQ, 
I 4 
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z = x or y, the particle’s transverse displacement coordinate, 
z’ = longitudinal rate of change of the transverse coordinate, 
ozO and 0,: are the nominal rms sizes of the beam, and 
0, is the particle phase in z/o,, , z’/q’ phase space. 
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Figure I: The Amplitude space grid. 

A regular Cartesian grid is supcrimposcd upon the ampli~utlc 
space (figure 1). The grid extends from 0 amplitude out to 
amplitudes Auner, Aymqx in M, N steps and is used to szparatc the 
space into many identically-sized cells. The granularity of the 
grid is chosen empirically and is set sufficiently coarse to 
minimize computational time while not so coarse :I> to 
introduce undesired spurious effects in the results. 

Particles are initialized with amplitudes equal to the value at 
the center of each grid ccl1 (Ai, A,). Many particles. each with 
different initial horizontal and vertical phase arc start4 with 
amplitudes (A;, Aj). The initial phases of the particles arc sict in 
the following manner. Let L, odd, equal the number of phases 
sampled in each transverse dimension. The initial phases arc 

fjm=F(rn + i), Qyn=F(n + i) 

where m and n are all integer values from 0 to L - 1. For each 
horizontal phase sampled there are L vcrrical phases associated 
with it, similarly with the vertical phases, making a total of L2 
particles sampled at each set of amplitudes (A,, ,1 ). An example 
is shown in figure 2. As with the grid granu arlty, L is also f 
chosen empirically. It should be small enough to minimi;tc 
computing time, but large enough to properly sample any 
resonance features in the phase space. 

After initialization each particle is transported through 1‘ 
full machine turns. Each of the machine turns consists of the 
following. One half of the BB kick from a gaussian shaped 2- 
dimensional opposing bunch is applied to the particle’s primed 
coordinate. The ppticle’s phase space coordinates are Ihcn 
rotated by a linear R, matrix. The rotation angle of the matrix 
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Rf is QZn, where Q, is the tune. Radiation excitation and 
damping, appropriate to maintaining the nominal b&am sizes, 
arc then applied to the particle’s coordinates. The R, matrix is 
again used to rotate the phase space coordinates and thus 
transport the particle back to the interaction point where, once 
again, l/2 the BB kick is applied. At this point the particle 
amplitudes are determined and stored so that they may be used in 
the amplitude averaging described below. 
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Figure 2: The distribution of particles in phme space. 

If viewed on a turn-by-turn basis a particle’s motion in the 
amplitude space, when subjected to the BBI, can jump around 
quite dramatically. To prevent these large excursions from 
appearing as a diffusion, the particle’s amplitude is averaged 
over the 7‘ turns. (T is made large enough to allow the particle to 
sample any resonance effects within the space, but is 
significantly less than 1 damping period.) At the end of this 
period the particle’s average position in amplitude space 
relative to its starting position is used to create the “density 
redistribution rules” for each cell. 

To smooth out the effects of the discretized space, a cloud- 
in-cell representation of the particle (particles are given 
dimensions the size of a single cell) is used. As many as four 
cells can then be thought of as containing a fraction of a 
particle. In this way the finite sized particle is passed smoothly 
from cell to cell. 

The “Density Redistribution Rules” 
The L* particles within each cell, each of which originally 

had amplitudes centered within the cell, have, at the end of T 
turns, had their average positions spread about in the amplitude 
plane. This is shown graphically in figure 3. On the left is the 
initial distribution for the cell i, j and on the right the 
distribution of cell i, j’s particles after the T turns. This 
mapping represents for cell i,j the rules for redistributing the 
ccl1 “mass” (defined as the particle density at the center of the 
ccl1 times the cell area AxAy) to the rest of tie amplitude plane 
[h]. Every ccl1 within the space has its own redistribution rule 
dcpcndcnt upon the characteristics of the amplitude space at that 
point. It is this set of rules for the entire amplitude space which 
ultimately determines the final particle distribution. 

i i 

Figure 3: Graphical representafion ofthe redistribution rules for 
cell ij. 

Relaxing the Particle Distribution 
After creation of the redistribution rules the program enters 

into Lhe second phase. Single particles are no longer tracked, 
but a pseudo-continuous distribution is “relaxed” on the 
amplitude space grid using the redistribution rules. An initial 
distribution is chosen and each cell within the grid assigned a 
particle number density accordingly. For simplicity, this 

number density when summed over all cells equals 1 (i.e. a total 
mass of 1). The redistribution rules are then applied to cvcry 
cell and the results summed and stored in a separate grid array 
(this separate array is always initialized to zero before the rules 
are applied to the original array). The roles of the two grid 
arrays are then interchanged and the process repeated until the 
distribution has relaxed to a stationary state. In our case, where 
there is damping and random excitation included in the particle 
motion, it is sufficient to update the distribution for a few 
damping periods to reach an equilibrium distribution. 

Further Exoloitations 
The information contained within the final stationary 

distribution and redistribution rules can be exploited further. 
For example, the flow of particles through the amplitude space 
is easily observed. Each cell i. j has a net mass flow out given 
by its own redistribution rule multiplied by the mass contain& 
within the cell and a net mass flow inward given by the 
redistribution rules of the other cells which place mass into cell 
i, j multiplied by the mass within these cells. A flow vector [or 
each cell is produced by taking the average of the equilibrium 
inward and outward flow vectors of a cell (figure 4). 
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Figure 4: Cnlcululing lhe 
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cell. 
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Lifetimes as a function of machine aperture are also readily 
calculated. Consider the vertical direction. A boundary is 
chosen at some grid amplitude, say J. Every cell below J 
contains some fraction of the total distribution. Let rzu bc the 
sum of all mass within cells with grid amplitudes less than or 
equal to J. The distribution is now updated once using the 
redistribution rules. However, rather than updating the cntirc 
distribution to the maximum vertical amplitude, only cells with 
j < J are used in the update. If the redistribution rules for a cell 
move some fraction of the cell mass to grid amplitudes larger 
than J then that mass is lost (figure 5). Resumming the 
distribution after the update then gives nb, and the lifctimc at 
this amplitude is 

At An n, -=-- or r=- 
7 n n, -"b 

Fraction lost 10 
the aneltlln 

0 i M 
Figure 5: Loss of “mass” al an uperiure limit 
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III PRELIMINARY RESULTS 

RR1 Off 
The program was tested for the case when there was no BBI. 

The results are shown in figures 6a-b and 7. Contours of 
constant (particle density)/(A,Ay) are shown in 6a. Each 
contour is spaced by x10 in density. Figure 6b shows the 
resulting flow and figure 7 the beam lifetime as a function of 
vertical machine aperture. The agreement of the simulated 
distribution with the expected exp(-x2/2-y*/2) gaussian 
distribution is quite good considering the coarseness of the grid 
used (3 cells/o). Also shown in figure 7 is the calculated 
lifetime for a gaussian beam of rms size 1. Agreement, although 
not perfect, is very good, particularly at large amplitudes. 
(Note: If the revolution period of a machine is lpsec, then a 1 
hr. lifetime corresponds to 3.6~10~ turns. This is shown as the 
horizontal dashed line in figure 7. The vertical scale of this 
figure thus extends from 1 msec to = 30 years!) The flow vector 
of hb shows no correlated motion as is to be expected for this 
case where a balance exists between the quantum excitation and 
damping. 
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Figure 6: a) Resultant (particle density)i(AP ) and b) massflow 
velocities, No BBI. c) & d) Same as a i’ & b) except 

5, = 5 = 0.04 (Note the change of scale). The dashed Line is 
the 4dz + ZQ = 4 resonance. Other parameters: Q, = 0.690, 

Q,, = O.dO9, damping time = 1000 turns, (~,lcr~, = 33. 
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BBI On 
Figures 6c-d and 7 show the results when the BBI is turned 

on. Except for the BB tune shift parameters, which were 5, = $ 
= 0.04, all other parameters were identical to those used to 
generate figures 6a&b. The BBI has clearly perturbed the 
resulting distribution and there is an obvious correlated flow of 
particles in the amplitude plane. Lifetimes are also much worse 
than the BBI off case at any given machine aperture. 

At this set of tunes, the 4Q, + 2Qy = 4 beam-beam driven 
coupling resonance was determined responsible for driving the 
particles out to such large vertical amplitudes. The location of 
this resonance in the amplitude space is shown as the dashed 
line in figures 6&d. 

Other locations in the tune plane were also explored. Other 
resonances and their effects on the resulting distribution tend to 
show the same characteristic features seen in figure 6c: a large 
increase in the vertical beam density at large vertical amplitudes 
and moderate horizontal amplitude. This suggest a simple 
measurement to verify this finding. A very small Be probe, 
“finger”, as used in a previous experiment [7] could be inserted 

vertically into the beam. Its horizontal position could then be 
varied and the bremsstrahlung photons created by the 
interaction of the large amplitude particles with the probe could 
be counted. One should easily be able to measure the greater 
than nine order of magnitude difference between the density at 
amplitude A, = 0, A, = 18 and A, = 4.5, A, = 18 shown in figure 
6c. 
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Figure 7: LiJetimes vs. vertical machine aperiure for fix 
distributions and /lows of figures 6a-d 

IV CONCLUDING REMAKKS 
This new method of sampling the amplitude space of the 

particles and using the resulting redistribution rules to 
determine the particle density in amplitude space has been 
shown to be capable of predicting beam lifetimes out to a large 
number of turns (> 1 hr.). It also has the added feature of being 
able to provide a clear picture of the particle dynamics within 
the amplitude plane through visualization of the resulting bcarn 
densities and particle flows. The method is still, however. in its 
infancy and many checks of its accuracy and limitations must 
still be performed. The technique must also bc further devclopcd 
to include the longitudinal motion of the particles since this 
added motion is known to have a significant influcncc of the 
particle dynamics. 

Further exploitations of the technique should also bc 
explored; it is by no means limited to Ihe study of the BRI. It 
can, for instance, be used to determine the final particle 
distribution of an electron beam in the presence of machine 
nonlinearities or, with suitable modification, the particle 
distribution evolution of a hadron beam for similar conditions. 
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