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Abstract - 
Lie operator method of solving the spin motion 

equation in collider nonlinear fields is used. The matrix 

presentation of spin Lie transformation for particle passing 

through collider elements is obtained. The formulas for 

combined several spin turn transformations are calculated in 

vector, matrix and operator forms for zero, first and second 

powers component of dynamical variable vector. The 

expressions for frequency precession vector components in 
zero, first and second powers or, orbit motion and first powers 

on spin motion are obtained. The computer codes algorithms 

for nonlinear spin motion calculation are discussed. 

Solution of soin motion 

As is known [l], the classical equation of spin motion 

in the collider is: 

dS/ds = [US], (1) 
where s is a spin vector, s is an azimuth and the precession 

frequency vector w is defined by BMT’s equation [2]. The 

equation (I) is written in the frame (e,, e,,T), fixed 

relative to the collider. 

In the approach, which is based on using the technique 

of Lie operators, the vectors s and w in the equation (1) are 

considered as operators. Then for a particle with the orbital 

Hamiltonian Ho,b and spin JJamiltonian US one can find 

the solution of this equation (the semicolons (‘I : ‘I) 

emphasize the operator nature of the expression): 

S(s)=exp(-: 
0 1 

S 

dS’(H,,-+WS):)S(o). (2) 

Here, as usual, the exponential operator is understood as a 

series: 

exp(- F ) - T (-l)” n :: - -:F: . 
n=o n! 

Each term of this series is the differential operator of n-th 

power, which action on an arbitrary function f is defined with 

a help of Poisson brackets: 

dF df dF df :F:f=(F,f} = dz.- - -.- 
i dPzi dpzi dzi' 

AS k known, Poisson brackets are: ( qi, qk)=( pi, pk) =o, 

(qirpk)‘-(pi,qk)‘Gik, where q,p - are a COnjLlgate 

dynamical variables pairs (x,px) , (z ,pz) , (a,~,) , 

(J, a) and 6ik - is the Kroneker symbol. Since the spin 

motion equation can’t be linearized in spin canonical 

variables action-angle J, a, it is useful to introduce the set 

of noncanonical variables [3]: 

Sx=./S2-J2.cos@, Ss=.,k2-J2,sin+, S,=J, 

here s~=s,~+s,~+s,~. For this set one can find: 

(sitsj )=eijkSkt where eijk - is the three-dimensional 

completely antisymmetric tensor. Besides that for any i, j 

the following expression takes place: 

(zi,sk)=(si,zk)=o. 
The operator, which is introduced in this manner is referred 

to as a Lie operator whereas the exponential series - J,ie 

transformation. 

For the total Hamiltonian Mo,-b +WS, which does not 

depend on azimuth explicitly, one can find instead of (2): 

S(s) = eXp(-:S(Horb +WS):) S(0) = M S(O), 

where M is a total exponential operator. According to the 

Hamilton equations, this operator satisfies an equation 

d”/ds=M: - (H,,b+WS) :. Let us present this operator as a 

product of three exponential operators [4,5]: M=MzMlMo. TO 

this end expand the total JJamiltonian in a sum of 

homogeneous polynomials in powers of 2: 

H,,b+WS = H2+H3+H4+WOS+W1S+W2S+... , 

where subscripts show powers of polynomials. It is important 

to find of M2, M1 and MO, that operators : H2 : and : WoS : 

do not change the power of dependence on 2 for any 

operands, but operators :H3: and : WlS: increase it by one. 

Similarly the operators : H4 : and : WAS: increase it by two 

etc. 
Using the Lie technique [6,7] of calculations M2, MI and MO 

one can find, that 

M=MzMlMo =exp(-:fz:).exp(-:fl:)'exp(-:fg:)= 

:f1? (3) 
= ( E - :fl: - :f2: + -----y- 1 MO, 

where 
:fg: =:h2+woS:= s:H2+WoS: , 

operator MO is 

Mg=exp(-:fo:)=exp(:woS:)exp(:h2:)=s A 

and 
S 

:f1: =:h3+w1S:=-:( 
s 

ds'MO(s')(H3+W1S) ): , 
0 

S 

:f2: =:h4+w2S:=-:( 
s 

ds'Mo(s')(Hq+W2S) ): - 
0 

S’ 

-;:A is; ds"[Mo(s")(H3+W,S),M,(s')(H3+W1S)]):. 
s s 
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In this formt~hs E is ;I unit oper;itor, MO is a usual spin anil 

orhitai matrixes S and A of linear tr;mxforrnation anti [ , ] - 

the commutator of operators. Functions hi and wis are 

“integrated” on azimuth polinomials with power equals i on 

components of 2 for orbital hamiltonian Hi and spin 

li~ir:~iltonian WiS. 

For calculation one need to know the series of orbital 

~lamiltonian 2nd spin precession frequency W (sound from 

the BhlT equation [7]), which arc presented in applcment. 

The operators for different elements may be grouped 

in one operator [7]. Therefore spin tlynamic:d characteristics 

may be investigated with using operators of one elements or 

w)trp of elements (one ore some period of collider in 3 
p:lrticularly). 

Polarization calculation 

The degree of the equilibrium polarization is given by 

the Drrbenev-Kondratenko formula [S]: 

8 Q- 
P -----? 

eq-5J3 Q+ 

a- = 

f L 
ds ez (n-Y%) K~, 

a+ = 
: L 

ds [l - ;(xI=+)~ + +(Yg-j2] K3. 

Let us write series n in power on orbital vector Z: 

ni(s)=n”i(S)+nlip(s)Zp(s)f”lipr(s)Z~(S)~ 
1Jsing this series one can find the next transformation 

formulas for any spin vectors: 

n(s)=M n(o) , 

where operator M is determined in (3). Let us rewrite the fl 

and f2 as coefficients of polinomials: 

fl=h'pqrZpZqZ,+w'ipZpSi , 

f2=h2pqrsZpZqZ,Z,+w2iprZpZ,Si e 

For illustration let us find the rezults of action : f 1 : on z and 

S. The Poisson brackets are: 

:hl:Si=O , 

:hl:Zi=hpqr(ZpZqZr,Zi)=3hp9rZpZq(Z,,Zi) t 
:wlkSk:Zi=(wlkpZpSk,Zi)=wlkpSk(Zp,Zi), 

:wlkSk:Si=(wlkpZpSk,Si)=wlkpZpekijSj * 

Let us introduce some useful definitions: 

E?ijkWljp'Uikp, eijkW2' 1 pFvikpr r 
3hpqr( Z,, Z,)-Bspq. 

arid hepxite its on power 2: 

ll”i(S)‘Sijnoj (0) , 

tllip(S)Zp(S)"(Sijnl jr(o)A,p+uikpSknn’n(o) ) 

.Zp(Ol t 

n2ipr(s)Zp(s)Z,(s)‘(Sijn2jqs(o)AqpAsr+ 

+UikpSkln'lq(O)Aqr+Skl"llt(O)AtsB,pri 

+ (BsprUiks+UijpUjkr fVikpr) Skln”l(o) ) 

‘ZP(O)Z,(O) - 
After insertion of S, U, A, B “summed” over a period in 

the spin vector transformation formulas, we can find the 

periodical solution for n. 
xow let 11s rewrite Y [ 6n/6~ ] from the polarization 

formula (the term which described deviation n on trajectory 

with only pO nonzero component in start point) ill the form: 

6n n(s,Z 
y6y= 

in=(O,O,o,O,O,p,))-n(s,O) = 

PO 
=Sijll 

1 jr(0)A,gfU1ikGSknnon(O)+o(P~) 

using that in the magnet the s,,=s,,=o and s,,=I we can 

write: 

1 

S 

ha-= [n”z(o)-n1zr(o)A,6+U 1 
zk6Sknn On (0) ] K3ds 

.JO 

and similar formulae for &a+. Now we can analytically 

integrate 6a- and 6a+ in the synchrotron magnet and 

express the adds into a+ and a- through n in entrance point. 

‘The algorithm of degree of the equilibrium 

polarization calculation is the next: 

First steD: find transformation spin and matrix through 

period; 
Second steD: calculating periodically solving no and 

“1 (z) ; 
Third steD: pulling no and nl( Z) through structure 

elements and summing on the magnet of structure the adds of 

integrals a+ and a-: ~-=X&O- , a+=~ 6a+. 

SUPPLEMENT 

The following values, which characterize the magnetic field. 

are introduced there: 

K,,, = + ebz, o~ 

Eo 
e dH, e dHx 

4 = --- =-*- , 
E, dx E, dz 

q = g. (2% 
0 dx 

e 2 
m,,, = -* 

d2Hx z e Tz -. d Hz,, 

2Eo dxdz 2E, dx2,dz2 ’ 

and the values of all quantities in the right sides ;Lre taken on 

the equilibrium orbit. 

Thus, one obtains the final expressions for components 

of w (including the zero, first and second orders on x, z , 

PO and its derivatives px=x’-~e/~oHosz, 

pz=~f+fe/~oHo,x, po) : 

W,=-(Box+Kz)-Box*(Y,a+a/2Yo+~/Yo2)+ 

+ ( +Btos-q) * (l+Y,a) .x+B,,a (Y,-1) *px+ 

+[+Bos2a(Yo-l)-(BoxKz+g)(l+Yoa)]~z+Boxp~+ 

+?i (gKZ-qKx+mZ+B** 2 ’ ox) - (Y,a+l) -x +B oxYoa~x~px- 

-(gKx+qK,+m,) . (Y,a+l) .x.z-(lB1,,-q) .x,p,+ 

+4Box(yoa-l)~px2+B10zyoa px~z+BozYoa~px~p,- 
-(gK,+$m,). (Y,a+l) *z2+(BoxK,+g) *z.p,- 

-~Box~(Yoa+l)~pz2-Boxp,,2: 
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w, = - (B,z-Kx) -B,z* (Y,a+a/2Y,+i/Y,2) - 

- [~B,,2a~(Y,-1)+(BozKx+g)~(l+Y0a)]~x+ 

+ (fB’,,+q)(l+Y,a).z+B~~a.(Y~-l)p,+B,,p,- 
- (gKx+$mx) * (Y,a+l) =x2 + 

+ (qK,-gK, -mz) * (Y,a+l) *x~z+B’,,Y,a.x~pz + 

+(B,zK,+g)xp,-%B,z(Y0a+l)*px2+&xY~a.Px.Pz+ 
+~(gK,+qK,+m,+B”,,) (Y,a+l) .z2+BV,zYoa~.z~Pz- 

-(iB’,,+q) ‘z.p,+ 2 +Boz(Y,a-1).pz -B,z.p, 2 ; 

W,=-Bos ( l+a+l/2Y02) -B’,x ( l+a)x-B’,z(l+a)z+ 

+ Boxa (Ye-l) -Px+Boza (yo-l) *Pz+Bos (l+a) *po- 
+[+BoS3* (2Y,a+l) + (qV-+B1los) ] .x2+ 

+ (q-~~B’,,)*Y,a~x~p,-g’~x~z+ 

+[gY,a+BoS2*(Y,a+S)]+x.pz+ 

+B’,,x~p&B,,~(2Y,a+l)*px2 - 

-[B,S2~(Y,a+~)-gY,a]~px~z- 

-‘i[+BoS3* (2Yoa+l) -(q’++BVtos) ] .z2+ 
2 -(q+%B’,,)Y,a,z.pZ-%B,,(2Y,a+l).pz + 

2 +B’oz.z,p,-BOSP, . 
In this expressions y. is the relativistic factor and 

a=1.159..:10S3’ 1s the dimensionless part of the electron 

anomalous magnetic momentum. 
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