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I. Abstract 

A new algebraic mapping routine for particle tracking 
across wiggler and undulator fields is presented. It is based 
on a power series expansion of the generating function to 
guarantee fully canonical transformations. This method is 
10 to 100 times faster than integration routines, applied in 
tracking codes like BETA or RACETRACK. The tracking 
method presented is not restricted to wigglers and undula- 
tors, it can be applied to other magnetic fields as well such 
as fringing fields of quadrupoles or dipoles if the suggested 
expansion converges. 

II. Taylor Expanded Particle Motion 

The particle motion in the magnetic field is described by 
applying a map over a finite step length z. The map is 
Taylor expanded with respect to the two transverse angle 
variables (zi, yi) at the starting point of the transforma- 
tion and a third variable z3, which is proportional to the 
inverse of the bending radius of the particle orbit taken at 
an appropriate reference point. This set of three expansion 
variables is unusual but fully sufficient for large bending 
radii and more efficient than the more commonly applied 
expansion with respect to the four transversal coordinates, 
two angle and two position variables. 

As an example and to demonstrate the method we pre- 
sent here results of an expansion up to second order, results 
up to third order are available from the authors [l]. 

The Mappiug Routine 

We start with a general form of the expansion for the par- 
ticle motion: 

“j = xi + 2 x:+( a0 + al x1 + a2 y{ + a3 x3 ) x3 
x’ Z f xi+( ub + ~2: xi + a; yi + ui x3 ) x3 

Yf = yi + 2 y:+ ( bo + bl x: + bz y; + b3 x3 ) x3 
y; xz y~+(b~+b:x~+b;y;+b~x3)~3, 

where the derivative with respect to the longitudinale coor- 
dinate z is indicated by a prime; the inital and final trans- 
verse particle position (z and y) is indicated by an index 
(; and f resp.). The coefficents ai and bi are dependent 
on the position coordinates at the starting point, on the 

longitudinal step width z and on the geometric shape S of 
the magnetic field. 

Inserting these expansions into the equations of motion, 
given in a fixed, Cartesian coordinate system 121 
( w = J1+ 2’2 + y’2 ): 

L ,  

x” = - 
C&o 

W [y’B, - (1 + z’~)B, + z’y’B,] 

y” = -1 w [z’Bz - (1 + y’2)B, + x’y’By], 
(BP)o 

we obtain a recursion formula for the a.; and bi coefficents 
with the result: 

Et r-2 
a0 = - JJ Sjy drdt 

0 0 
L t 

a1 = - 
JJ 

zSizy dzdz 
0 0 

’ 
JJ 

‘(Siz - ZSiyy) dzdz 

11 1 Iiziz {Siz S,‘Sizdr 

Si, dzdz 

+sizy 1’ 1’ Siy did;} dzdz 

z I 
bo = + 

JJ 
Si, dzdz 

0 0 

’ bl = - 
JJ 

*(5’~~ - zSi=z) drdz 
0 0 

b3 = +~‘~‘{Si; L’Siydz 

and b2 = -al . The function S(z, y, z), the magnetic sca- 
lar potential Q,r(z, y, z) and the magnetic rigidity of the 
particle (Bp)c are connected by the relation: 

S(X,Y,Z) = -&e/(23 (BP)o). 
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If we choose 2s = l/p0 as the inverse of the bending radius 
(or scaled to become dimensionless ) at a fixed reference 
point, all derivatives of S(Z, y, Z) are defined and are in- 
dicated by an index. The function Si = Si(xi) yir z) and 
its derivatives are taken at the initial transversal particle 
position Z; and 2/i. 

The transformation: 

(“i1”IrYi,Y,!) = (xjlx;,Y,,Y;) 

is now well defined and these four equations form a second 
order map between the inital and final particle coordinates 
over a finite step length .z. 

The Generating Function 

To construct a generating function (G.F.) from the trans- 
fer map we change the particle coordinates (z, I’, y, y’) into 
canonical variables (qz, px, qy, py). Up to second order we 
just rewrite: qx = x, px = x’, qy = y, py = y’. The 
transverse vector potential is asumed to be zero here, but 
it can be t,aken into account. In case of the periodic un- 
dulator field we easily find longitudinal positions were the 
transverse vector potential vanishes. 

Rearranging the transfer map and expanding the result 
again we obtain an implicit transformation of the type: 

(Q~i~prj~QYiilPyj) a (Pxj,pzi,PYj,pYi). 

With the abbreviation iii = (ai - ~a:) 2s and similarly for 
6i we find: 

QXf = qri+pz~(r+~1)+py~~.2+iio 
+(&3 -a& - bgt2)z3 

QYf = q5/i+pyl(z+~2)+pZj~l+~O 

+(b3 - a.;61 - @2)23 

P*i = PXj(l- +3) -PY&3 

-443 +(u;u; +b;a; -u&t!; 

PYi = pyj (1 - b&) - p44e3 

493 + (c&b; + bbbl, - b;)x;. 

By adding appropriate correction terms these four equati- 
ons can be identified with the partial derivatives of a G.F. 

F = F(qxi,wj,wi,wjh : 

P”f E dF/dpx, PXi G 8F/8qxi 

qYf 5 dF/8pyf PYi 3 aF/aqYi. 

For the G.F. we choose an expansion: 

F = Foo+Flop*j +FOIPY~ 

+Fzo PX; + FII PZ~PY~ + Fo2 PY;. 

Comparing the coefficents we obtain for the Fij : 

Flo = qz; +iio + (63 -a& - b$2)23 

FOI = q?Ji + &O + (i3 -CZbil -bbi2)23 

FII = 62( 3 a, ) 

F20 = (2 + &)/2 

Fez = (2 + 62)/2; 

and F,-,o has to satisfy the two partial derivatives: 

13Foo/8qxi = 4x3 + (a&: +b&a’, - u;,x; 

aFoo/hYi = -b;xs + (c&b’, + bbb; - b;) xi. 

This is the expanded form of a G.F. for arbitrary magnetic 
fields. 

III. Application to Undulator Fields 

Now we apply the results of the last sections to an explicit 
description of the undulator field, by taking the formula for 
the magnetic scalar potential of an undulator as suggested 

by [31: 

V pot = -(Be/k,) cos(k,z) sinh(kyy) cos(k,z), 

with ks + kz = ki. We are able to present the G.F. for 
this field dependence; however, this function still contains 
a closed orbit offset. We define the closed orbit to be the 
periodic solution with coordinate values pxi = pxf = 0, 

Vi = TlXt = l/(kzpmin), which repeats after one pe- 
riod and Pmin is taken at maximum field in the midplane. 
We subtract this offset by a coordinate transformation 
and obtain a G.F. which describes the nonlinear particle 
transformation with respect to the closed orbit. Introdu- 
cing the abbreviations cz = cos(k,qxi), sx = sin(k,qzi), 
cy = cosh(kyqyi) and sy = sinh(k,qyi) we obtain the coef- 
ficients Fij: 

Foe = z x;(k;cx2cy2 + k;sx2sy2)/(2kJ2 

FIO = qxi - l/4 z2xik,sz CX (kzcY2 + kz)/ki 

FOI = qyi + l/4 t2x;kysy cy (k,2cz2 + k:)/k; 

FII = z x3= sy (k; + k:)/(k,k,) 

F20 = z/2 - z x3kzsx cy/k, 

Fo2 = r/2 + z x3k,.sx cy/k,. 

In this expansion we apply 2s = l/‘(k,p,i,). The step 
length z is adjusted to integer multiples of the period 
length to simplify the integration over z. This is an ex- 
act solution up to second order plus some correction terms 
of third order. 

If we consider only second order terms an averaged Ha- 
miltonian can be found from the G.F.: 

F = FOO + q*i PZf + q;Yi PYj + z (PX; + p$‘!)/Z. 

Calculating the change of the coordinates per period we 
find: 

(Pzj - PXi)/z = -(aFoolaqxi)/‘z 

(QXj - w)/t = PXj, 

and similarly for the y-plane. Defining a function which 
depends on the initial positions and on the final momenta 

<ii> = F&z + (px; + PY;)/2 
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we express the result in terms of partial derivatives and 
(APX = PXj - PEi , AqX = qXj - qXi) 1 

Apx/z = -a < a > /aqzi 

Aqx/r = +a < ii > /bPXj. 

Because < fi > does not explicitely depend on z, we ignore 
for a moment the discrete character of z. Changing from 
difference into differential equations for an infinitesimal 
step length dt of z yields now Hamiltonian’s equations: 

dpz/dz = -a < H > /dqx 

dqx/di = +a < H > /dpz, 

and < H > converges to the averaged Hamiltonian: 

K H > = (PX’ + py2)/2 + Foe/z 

= (PX2 + PYV2 

+z;(k;ci-c2cy2 + k&2sy2)/(2k,)2. 

This Hamiltonian agrees with a result presented by [4]. 
Because of the special choice of our expansion variables, 
second order terms of this Hamiltonian include already all 
dominating multipole fields. This shows that the G.F. is a 
very efficient approach. 

An expansion up to 4th order taken now with respect to 
9” and qy, without constant terms, 

<: H :, 2 (P*’ + w2P + (42)2((kyw)2 - (kzqx)2 

+(x.zq;L.)4/3 - (k&w qd2 + (k,ny)4/3) 

yields the quadrupole and octupole-like terms. 

Numerical Results 

A FORTRAN tracking routine is written based on this 
C.F.. Partial derivatives of the G.F. yields an implicit re- 
lat,ion of the particle coordinates at the initial and final 
point of our transformation. Starting with a set of initial 
coordinates we apply a Newton fitting routine to solve for 
the final particle position; a fast and precise technic. Be- 
cause the transformation is based on a G.F., it becomes 
fully canonical. 

A comparison was done between three different fast 
tracking methods against a high precision but slow inte- 
gration routine, splitting the undulator period into more 
than thousand slices. The calculation was done for a 20 
period undulator having a period length of 30 mm, a ben- 
ding radius of Pmin = 9.9 m and a ratio of the k-values of 
(k,/kJ” = 0.20 

The fast methods are based on 1) a fast, non-canonical 
integration routine, splitting the undulator period into 30 
steps; fast integration technics like this are applied in the 
RACETRACK and BETA code; 2) a second order G.F. 
taking five periods in a single step and 3) a third order G.F. 
taking ten periods in a single step. A set of 16 different, 
initial coordinates are chosen with values of the order 10 
mm and 3 mrad. To get a fair CPU time comparison, 

the step length .z in each routine is adjusted to achieve 
roughly equal accuracy of the final coordinates. Results of 
the different tracking methods at the end of the undulator 
are shown in the figures. Only discrepancies of the non- 
linear part with respect to the high precision routine are 
shown. 

Compared with fast integration routines the reduction in 
the CPU time was about a factor 50. However, this reduc- 
tion depends strongly on the convergence of the expansion. 
The reduction is still greater when the characteristic ben- 
ding radius is large as in high energy machines and when 
the period length becomes short. 

10-Z 

10-S 

Ax - values 

10-S 

10-4 

fast integration 

5 10 15 

16 different starting values 

Figure caption: For 16 particles with different initial 
coordinates, the final, non-linear change 6 of the two trans- 
versal angle coordinates x’ and y’ is compared to the cor- 
responding reference value 60 of the high precision integra- 
tion routine: A = (6 - 50)/60. 
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