GEGMETRICAL (LIENARD-WICHERT) APPROACH IN ACCELERATOR FHYSICS

Arutunian S.G., Mailian M.R.

Yerevan Fhysics Institute, 375036, Yerevan, Armenia

A geometrical (Lienard-Wichert) approach is used to define the field of a relativistic bean (both in vacuum approxination arld taking into account reflections from vatuim chamber walls). The approach allows to take into account the curvature of the tiejectory amd the Uistreteness of the bean current.

Buch an epprivaci to the probiems of acceler ator physics was first used by I. Tainm [1] Sn 1cit-1948. Recently the importarice of the curvature effects is admitted in acceieratur flysics (see, e.g. [2-G]). However, these works are based on the continuous approximstion of the current and in reality the whole component of the fiely related to the radiation is fallen out. This component essentially distorts the Coulomb term at distances as small as interparticle distances within the beam. Adequate to the physical condition is the conception of represnting the field as a sum of microscopic fields of individual particles averaged over the specific physical effect. The continuity of the current over the total fiejd is not satisfied in modern electron accelerators 27,8$]$.

In this report the resulte of the previous works [7-11] based on the remarkable spatial pattern of the Lienard-Wichert field of a particle are presented ithe influence of these fields on dynamics is estimated). The refiections of the beam self-field from conducting surfaces of the accelerator are also considered. The incidence of the hard part of synchrotron radiation on the exterior wall of the vacuum chamber results in a locelizet "spot" of induced charge, which noves aiong that wall faster-than-ligth. The fitid and the force lines resulting from motion of this "spot" are determined.

1. Beam self-field

The bunch of electrons can be considered as a continuous one if [7,8]
$\mu_{0}\left(\mathrm{Ro}_{x}\right)^{3 / 2} r^{-4}>1$,
where μ_{0} is the bunch density, R is radius of curvature of the bunch orbit: o_{x} is the transverse size of the bunch in the orbit plane, γ is the Lorentz-factor of particles. Derivation of (1) is based on the analysis of the beam self-field as a superposition of Lienard-wichert fields of particles [9-11]. The fact, that the hard part of synchrotron rediation of a particle is localized in a estended narrow γ-region that stretches from the particle (see formula (4)) is taken into account. Out of this region the field of the particle is substantially asymmetric with respect to the forward and backward directions :
$\frac{R}{2}^{2} \vec{E}=\left\{\begin{array}{l}-\frac{2 \hat{x}}{(35 / R)^{5 / 3}}+\frac{2 \hat{S}}{(35 / R)^{4 / 3}}+\frac{2(z / R) \hat{z}}{(3 s / R)^{2 / 3}} \\ \frac{R}{2 s^{2}}\left[\left(x^{2}-z^{2}-s^{2}\right) \hat{x}+25 x \hat{S}+2 z x \hat{z}\right],\end{array}\right.$
$R^{2} \hat{H}=\left\{\begin{array}{l}\frac{2(2 / R) \hat{x}}{(35 / R)^{2 / 9}}-\frac{(z / R) \hat{5}}{3(5 / R)^{2}}+\frac{2 \hat{z}}{(35 / \hat{A})^{5 / 3}}(2 b) \\ \frac{R}{2 s^{3}}\left[2 x z \hat{i}, 25 z \hat{3}+\left(x^{2}-s^{2}-x^{2}\right) \hat{z}\right],\end{array}\right.$
where s is the viewpoint coordinate relative to the particle along the trajectory, x and z are trarisverse deviations of this point. $(\hat{x}, \hat{s}, \hat{z})$ is the corresponding system of unit vectors, upper and lower formulae satisfy the conditions $s>0$ and 50 . The formulae (2) deviate in $1 \gg x / R \gg \gamma^{-2}$ approximation (the viewpoint is out of the caulomb region), and
 Fi' ${ }^{2}$. Dne can "draw" the field of a particle by the lines of the field, the covariant techniques of which are developed in [12-16]. Illustrations of the field of a particle of Lorentz-factor $\gamma=1.5$ and $\gamma=100$ are presented infig. 1.

Fig. 1. The field of the charge near the r-region represented with the help of force lines, when $\gamma=1.5$ (A), $\gamma=100$ (B). The whole system of lines in the space can be represented as a set of line systems on surfases one enclosed in another. Two of these surfaces are shown in fig. 1A the trajectory is marked by an arrow). The force lines on the orbit plane are shown in fig. 1B. When increasing γ, the size of the r-region $\mathrm{Rr}^{-1}+0$, however the structure of the field qualitively remains the same.

Following [11], one can obtain a general formula for the Lorentz force by which a one-dimensional bunch of uniform linear charge density λ acts on the linit charge moving at the velocity BC \{all particies of the bunch move along the curve $\vec{r}_{0}(s)$ at the same rate BC):

where $l=\left|\vec{r}-\vec{r}_{0}(u)\right|$ is the distance between the retarded position $\vec{r}_{0}(u)$ and the viewpoint \vec{r}. $\vec{n}=\left(\vec{r}-\vec{r}_{0}(u)\right) / 1$, the values of $\vec{\beta}$ are taken at the corresponding retarded positions. The first radiation term of (S) is caused by the bunch edges and the secand term is caused by continuous charges and currents. Using (3) one can estimate the required quantity of terms in expansion of the force \vec{F} over the small deviations of the viewpoint from the bunch center and corresponding influence of these terms on the beam dynamics (unwieldy expansions in [3] lead to inaccurate results).

The condition (1) is not satisfied for the present cyclic electron accelerators (for FETFA the left side of (1) 3×10^{-3}). Therefore the self-field of the beam consists of a smooth component (the sum of fields (2)) and in average non-intersecting r-regions (stachastic component, i.e. spatial localization of the hard part of synchrotron radiation).

The main result of smooth component action is the shift of the betatron oscillation frequency $w_{x}[8,10]$ by the value $\Delta \nu_{x} \sim A \mu_{0} R o_{z} r_{0}^{\prime}$ ($2 \nu_{x} \gamma$), where $r_{o}=e^{2} / \operatorname{ma}^{2}, A \propto 1 O_{,} o_{z}$ is the vertical size of the beam. There is no γ^{-2} factor in comparison with the value of the frequency shift counted in the rectilinear approximation of the tracks (see, e.g. [17]). This fact is due to the absence of compensation of electric and magnetic forces of two-particle Lorentz forces, which is restored at the distances $=\operatorname{Rir}^{-2}$ (this quantity is less than average distance between the bean particleß).

The influence of the stochastic component of the field is similar to the quantum swinging of betatron oscillations calised by self radiation [11]. In fact, the question is about mutual scattering of the particles by synchrotron radiation.
2. Reflections of synchrotron radiation from the vacuum chamber walls

the distance between particles. Therefore, when studying the influence of the nearest particles an the electron dynamics, one may meglect the reflected fields.

Let" 5 consider the hard part of the field of a particle that circulates inside a azimuthal symmetric vacuum chamber. Since the hard part of synchrotron radiation is formed within the angle $<\gamma^{-1}$ to the direction of the particles motion, one may consider reflections from the exterior walls of the chamber only. Along this wall, perturbations of the charge density run at the rate $\beta c(1+$ $\sigma / R)$. For the β, d and R under consideration this value is greater than the speed of light. The maximum of the perturbation is caused by the field of r-region. The electric field polarization is almost radial (the radiation incidence angle is $\left.\simeq(2 d / R)^{1 / 2}\right)$. The field in the r-region is determined by the formulae $[7,18,19]$:
$E=\frac{4 e r^{4}}{1 R} \frac{\left(1+a^{2}-n^{2}\right) \hat{x^{\prime}}+2 a n^{\hat{2}}}{\left(1+a^{2}+n^{2}\right)}$.
$H=\frac{4 e r^{4}}{1 R} \frac{\left(1+a^{2}-n^{2}\right) \hat{2}-2 a n \hat{x}}{\left(1+a^{2}+n^{2}\right)}$.
where $\hat{"}$ " $\hat{x_{0}}$ are the unit vectors at the retarded point, l is the distance between the given point and the point at the center of the cross-section of γ-region, γ^{-1} al is the vertical deviation of the viewpoint in that cross-section, the parameter η is related to the horizontal deviation $\gamma^{-3} \not \mathcal{R}^{R}$ of the view-
 $-3 x)^{1 / 3}$. It is evident, that the transverse sizes of the r-region on the vacum chamber are $\because \gamma^{-\mathbf{s}} \mathrm{F}$ in the orbit plane sthe characteristic wavelength, of synchrotron radiation) and $\sim \operatorname{cra}^{-1}(\text { IRd) })^{\prime 2}$ in the vertical direction.

If the walls of the chamber were ideal conductors the induced, Fharge q in this "spot" would be qaree(Fir $\left.{ }^{-3}\right)\left(\gamma^{-2}(2 r d)^{2 / 2}\right) \simeq e$. It is obvious, that in the range of wavelengths characteristic to the synchrotron radiation ($10^{-8} \mathrm{~cm}$ and less) it is necessary to take into account the finiteness of the conductivity of the chamber walls. Fallowing [20] let's carry out some simple estimates. Let's consider the classical motion of the nonrelativistic electron of the medium in the field of the γ-region (in this range of wavelengths one may consider the electrons of the medium as free ones and the interaction with them -. noncoherentl. The radiation friction force to the Lorentz force within the γ-region ratio is $\boldsymbol{\sim}_{\mathbf{o}^{\prime}} / \mathrm{R} \lll 1$ for characteristic values of R \& γ. Neglecting the friction forces, for the transferred pulse Δp and stifif Δ. of the electron during the time T $\mathcal{A} /\left(c \gamma^{9}\right)$ of passage of the synctirotron radiation pulse, we have
$\Delta p \Delta 4 \sqrt{2} m e\left(r_{0} / R\right)(d / R)^{-1 / 2} \gamma$,
$\Delta x=\alpha_{0}(R / d)^{1 / 2} \gamma^{-2}$
(the quantity $\Delta p \rightarrow 0$ when $T+\infty$). When deriving (5): we took into account the radiation term
only. Note that the shift of the electron due to the Coulomb term during the same time $\Delta i_{0}=$ $r_{0}(R / d)^{2} \gamma^{-5} \ll \Delta x$, if synchrotron radiation hes been formed ($d\rangle>\mathrm{Rr}^{-2}$).

The "instantaneous" polarization (5) of the conducting medium electrons of charge density n gives risp trs a field of sendy on the surface of the conductor. This field is arir o $R^{2} \gamma^{-\sigma}$ fron the intensity of the synchrotron radiation field. For $n=5.3 \times 10^{24}$ cm^{-5} (copper), $R=10^{4} \mathrm{~cm}, \gamma=10^{4}$ this ratio is 21.5×10^{-6}, i.e. the real value of the charge q induced within the synchrotron radiation "spot" on the chamber wall is $q=1.5 \times 10^{-4} \mathrm{e}$.

3. Field of the faster-than-1ight circulating charge

The perturbation of the charge density on the wall of the vacuum chamber can be represented as a charge that moves faster-than-light along a circle of radius R+d (similar to [21];. The Machus surface [22] is the caustic of all wave fronts emitted from the trajectory and separetes the beat wave of the field. When approaching to the point A on the Machus surface fron its inner side the field increaser as [23]
$E \operatorname{sq} \varepsilon^{-3 / 2}(21(1+1 B \Gamma \cos \psi /(R+d)))^{-1 / 2}$,
where $B=\beta\left(1+G(F), \quad \Gamma=\left(E^{2}-1\right)^{-1 / 2}, \quad 1\right.$ is the radius of the wave front tangent to the surface at the point $A, e>0$ is the digtance of the viewpoint from the Machus surface. The "edge of return". that correspods to the condition $\mathrm{R}+\mathrm{d}+1 \mathrm{~B} \Gamma \mathrm{cos} \psi=0$ is separated out on the Machus surface. The intersection of the surface with the orbit plane forms a characteristic "beak" ($\psi=\pi, i, \ldots$ e. $\quad 1=(F+d) / E \Gamma$). near, which the field is proportional to $E^{-s} \varepsilon^{-2}$ In the direction tangert to the "beak" Ex $\varepsilon^{-2} \quad(\varepsilon>0)$.

One may realize the geometry of the field by the force lines presented in fig. 2.

Fig.2. The field lines of the faster-thiri-light moving charge along the exterior wall of the chamber. Two sets of intersecting lines are seen chere may exist more than one solutions of the retardation equation). The field is largest near the
characteristic "beaf" - the intersection of the "edge of return" on the Machus surface by the orbit plane. It is essentials, that backwards from the charge, which induces charge perturbation on the chamber wall and on the same track with on accuracy of Rr^{-2}.

Hele the bourdary condition is not satisfied, since we are interested in the field near the "beat:" only. One is ta take into account that this pattern is spreads because the surface charge q is not a point one.

The estimates given above show that the effects associated with the trajectory curvature are important both for the vacuum field pattern and the influence of the chamber on the field of the beam. The field asymmetry found causes perturbations of the beam dynamics. Most of these effects are estimated in the first approximations but one may see that the geometrical (Lienard-Wichert) approach is useful when it is based on the spatial fattern of the field and not on the "almost infinite" expansion (ar" terms) in the main harmanics.

Fefereces

1. Tamm I.E. Coll = of Sci. Works,V.1,Mocow, Nauka, 1975,F.390-423.
2. Keil E. Europ. Drg. for Nucl. Res. Rep., CERN/LEF-TH/85-40, 1985.
3. Talman R. Fhys. Rev. Lett. . 1986, 56, 14, 1429.
4. Basseti M., Brandt D. Europ. Org. for Nucl. Fes. Fep. : CERN/LEF-TH/E6-04, 1986.
5. Piwinski A. Europ. Drg. for Nucl. Fes. Rep. CERN/LEF-TH/B5-43, 1985.
6. Lee E.F. Fiart.Accel. 1990, 25, 2-4,241.
7. Arhitunian S. G.,Nagorsky G.A. Frep, YERFHI -453 (60)-80, Verevan. 1980.
8. Arutuniari S.G. Proc. of XIII Int. Conf. on High En. Accel (Aug. 1986, Nowosibirsk),V.2, F. 182-185.
9. Arutunian S.G. Frfp. YERFHI-S87(45)-79. Yerevans 1979.
10. Aruturian S.G. FrEp. YERFHI-477(20)-81, Yerevars 1781.
11. Fruturian S.G. Froc. of 1 Europ. Accel. Conf. IJune 1988, Fomel,V.1,F.629-630.
12. Aginian M.A. : Arutunian S.G. Prep. YERFHI -684(74)--93, Yerevan, 1983.
13. Arutunian S.G. Usp.Fiz. Nauk, 1986, 150, 445.
14. Arutunian S.G., Mailian M.R. Prep. YERFHI -1163(40)-89, Yerevan, 1980.
15. Arutunian S.G., Eabuji an H. M. Frep. YERFHI - 971 (41)-87:Yerevan. 1987.
16. Arutunian 5. ©. Frep. YERFHI-1162(39)-89, Yeirevens 1909.
17. Frect H. Accelerateurs Circulaires de Farticules, Saclay. 1966.
18. Arutumiari S.G., Nagorsky G.A. JTF (USSR), 1985,55, 8, 1494.
19. Arutunian S.G., Mailian M.F. JTF (USSR). (to be putbliched).
20. Jackson J. Classical Electrodynamics, N. Y.-London, 1962.
21. Girizburg V.L. Theoretical Fhysics and Astrophysic:s, Moscow, Nauka, 1981.
22. Boiutovsky G.M. Eikov V.F. Usp.Fiz. Nauk.s $1990,160,141$.
23. Arutunian S.G. Ealotovsky B.M. Bikov V.F. Mailiam M.R. (in preparation).
