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Summary 

The Ground Test Accelerator (GTA) will be a heavily 
beam-loaded H- linac with tight tolerances on acceleratina 
field parameters. The metho& used in modeling the effect: 
of beam loading in this machine are described. The response 
of the cavity to both beam and radio-frequency (RF) drive 
stimulus is derived, including the effects of cavity detuning. 
This derivation is not restricted to a small-signal 
approximation. An analytical method for synthesizing a 
predistortion network that decouples the amplitude and 
phase responses of the cavity is also outlined. Simulation of 
performance, including beam loading, is achieved through 
use of a control system analysis software package. A 
straightforward method is presented for extrapolating this 
work to model large cou 
parasitic modes. Resu ts to date have enabled the RF P 

led structures with closely spaced 

control system designs for GTA to be optimized and have 
given insight into their operation. 

Introduction 

Because of the stringent performance and operational 
requirements of the GTA RF system, a thorough effort has 
been undertaken to model and simulate the performance of 
the cavity field control loops. The use of cryogenically 
cooled cavities to accelerate a pulsed beam of up to 200 mA 
leads to peak beam-loading factors of up to 80%. The 
relatively large cavity detuning required for this level of 
beam loadin 
phase f 

exacerbates the am litude modulation to 
modu ation (AM/PM) coup mg inherent in the F 

accelerating cavity, leading to stricter control-loop 
performance requirements. An accurate model of the 
dynamic performance of the cavity is essential to the success 
of this undertaking. 

Models of the response of accelerating cavities to drive 
and beam stimuli have been presented in the literature.‘v2 
These models, because they were derived usin amplitude 
and 
to tl!e small-signal regime. When the supe!position of 

hase analysis, are quite useful but general y restricted 

responses resulting from RF drive and beam current is 
expressed in terms of amplitude and phase, strong nonlinear 
and transcendental couplings appear in the anal sis, 
limitin 

LB 
practical applications to small purturbations. B In 

the met od described here, a complex envelo 
! 

e model of the 
in-phase and quadrature (I/Q) responses o the cavity is 
derived. Thus the stimulus! behavior, and resultant 
response of the accelerating cavity are expressed using a set 
of linear and fully orthogonal signals. No restrictions other 
than linearity and time-invariance are placed on this I/Q 
model; therefore, effects such as large-signal perturbations, 
cavity detuning, and finite resonator Q can be conveniently 
and accurately included. The extension of this technique to 
include structures with closely spaced resonant modes, such 
as large coupled-cavity linacs, is uncomplicated. 

Cavity Model Development 
To reduce the computational effort involved in 

simulation to a tractable level, a baseband model of the RF 
accelerating cavit has been developed using the complex 
envelope concept. Y ,5 This method is entirely equivalent to 
direct simulation at RF frequencies while avoiding the high 
associated sampling rate. In essence, the analysis is 

F 
erformed in a reference plane that is rotating at the RF 
requency; therefore, only the complex baseband modulation 

envelope remains. As mentioned above, the I/Q form of the 
complex envelope is used in this derivabon. 
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An electrical equivalent circuit of an RF accelerating 
cavity system near resonance is shown in Fig. 1. Starting 

RF driver transport cavity beam 

Fig. I. Equivalent circuit ofan accelerating cavity system 

from the fundamental differential equation describing the 
voltage response of the cavity circuit to a current impulse, 
i.e., the impulse impedance response, the time-domain 
operational model of the complex envelope, which is shown 
in Fig. 2, can be deduced, where 

and 

R = cavity shunt resistance (ohms). 
I = cavity damping time constant (set). 

Ao = cavity detuning frequency (radsec). 
Q = cavity resonator loaded quality factor. 

i,(r) l’:(f) 

cairy current cavity voltage 

iq(f) ‘.q(i) 

impulse response 

ii(l) = in-phase component of cavity current 
I~([) = quadrature component of cavity current 
v,(l) = in-phase component of cavity voltage 
vq(l)= quadrature component of cavity voltage 

Fig. 2. Operational model of cavity behavior in the time-domain. 

This is the envelo e observed in a reference frame 
rotating at the stimulus requency. An equivalent model in F 
the LaPlace transform domain can be generated, where 

.S+a 
1C 

s2+b,s+b2 
and 

s+a 
IS 

s2 + b,s + b, 

(2) 
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with 

y.=(;- $) , bl=(;) , 

2QAo , and b,=(;+Aa2) 

Note that in both cases,.the describing equations of the 
model are linear and simple m nature. No restrictions have 
been placed on the properties of the input current signals 
other than the existence of their LaPlace transform. The 
effects of cavity detuning and finite resonator Q have been 
included directly. 
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Fig. 3. Response of an excited resonant cavity to a 180” 
phase step. The phase step is applied at 60 ps. 

The responses of this cavity model to various 
perturbations are demonstrated in Figs. 3 and 4. In this 
simulation, the following assumptions have been made: 
Q = 1.0 . 104 and r = 7.5 us. In Fig. 3, the cavity is driven 
on resonance and a 180” phase step is applied. The field 
collapses momentarily in the process of reversin 

f 
sign, as 

expected. In Fig. 4, the cavity is driven at a requency 
detuned from resonance by ho = 3.9 . 105 radk.. Figure 4a 
shows the response to a unit step in input current, while 
Fig. 4b depicts the effect of a 30” phase perturbation on a 
cavity that is in the steady state. Note that this simulatipn 
faithfully describes the behavior of a detuned cavity with 
these stimuli. 

Augmentation of Cavity Model 

The cavity model described above can easily be 
augmented to include beam loading, multiple resonances, 
and dynamic reflected voltage effects. An RF *cavity, in 
normal operation, is a linear time-invarient device. Thus, 
the effects of beam loading on the field in the cavity can be 
expressed through linear superposition of the field induced 
by the RF drive stimulus and the field induced-by the beam 
current passing through the cavity. For a relativistic beam, 
the response dynamics of the cavity are not modified by the 
presence of beam current. A beam-dependent susce 
should be added to the model to account for the e B 

tance 
ect of 

cavity voltage on beam velocity for nonrelativistic beams.‘v6 
The expression of the cavity stimulus and response in 

terms of linear ortho onal 
calculation of the forwar f 

signals also permits the 
and reflected waves within the RF 

drive line. Once again, linear superposition is used to 
determine the total traveling waves in each direction on the 
drive line. Both the beam and the drive amplifier contribute 
components to these waves. An operational model of a 
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Fig. 4. Responses of cavity with (a) unit amplitude step 
applied at 0 sand (b) 30”phase step applied at 60 ps. 

beam-loaded cavity, including the dynamic reflection 
calculations, is shown in Fig. 5. The cavity field and the 
total traveling waves that appear during a typical pulse are 
shown in Fig. 6. The beam current, cavity detuning, and 
coupling coefficients have been adjusted so that the load 
appears to be matched when beam current arrives at 10 ps. 
In reality, however, these arameter choices simply force 
the vector sum of the partia P waves, induced by each source, 
traveling away from the cavity to equal zero. With respect 
to dynamic perturbations from this static condition, the 
drive amplifier still sees a detuned and overcoupled load at 
all times. This effect occurs in physical accelerating 
hardware systems as well. 

Up to this point, it has been assumed that the cavity 
being modeled can be adequately represented by a single 
resonance. This may be an invalid assumption, however, if 
either the RF drive or the beam contain appreciable signal 

in the vicinity of nearby parasitic 
izk$kation of this effect into the cavity 

modes. 
model is 

straightforward. Because the modal fields are linear., a 
realistic electrical model of a cavity with excitable parasitic 
modes is shown in Fig. 7a. Each mode can be characterized 
by a unique resonant frequency and quality factor: The 
operational equivalent of this circuit appears m Fig. 7b, 
wherein linear superposition was again used to determme 
the total field in the cavity. 
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n = eqwvalent drwe loop turns ratio 

Zo = drive lme characterisrx impedance 

i(l) = impulse impedance response of cavity 

r, = current reflection coefficient 

L; = forward voltage due to generator 

jj = forward current due to generator 

ib = beam current 
&be ic - cavity current due to generator. beam 

vf,* = cavity voltage due to generator, beam 

v$,‘= rellected voltage due to generator, beam 

vi = total cavity voltage 

U$ = total reflected voltage 

Fig. 5. Operational model ofcavity with beam 
loading and reflection calculations. 

Decoupling Network Synthesis 

A resonant circuit, such as a cavity, exhibits cross- 
coupling between responses to amplitude and phase (or I/Q) 
modulation. This is especially evident when the cavity is 
driven slightly off-resonance,, i.e., under detuned conditions. 
Substantial difficulty can arise when attempting to regulate 
the fields in a cavity of this sort, as this cross-coupling 
causes intercoupling between the feedback control loops. 
This cross-coupling effect can be eliminated, as shown in 
Fig, 8, wherein the decoupling network is used to predistort 
the I and Q drive signals so as to remove their interaction 
from the overall system. Here, the cross-coupled network 
could represent a simple cavity or a complex combination of 
a cavity and RF amplifiers, transmission lines, etc. The 
transfer function of these concatenated networks is 

[ ::, ] = [ s:: -z;; ] [ 2:: -:I?,: ] [ 1; ] 

The resultant compound transfer matrix is thus 
orthogonalized if 

and 
d,, = d, = 1 

d,,= -pJ: d,,= p) 

Therefore, for a cavity, these predistortion functions 
are simple and realizable. Standard network synthesis 
methods can be used to design circuits of this type into the 
baseband, or video, section of an UQ control module. Note 
that the full benefit of this sim le decouplin scheme can be 
realized only if I and Q control oops are use P if to regulate the 
cavity field. 
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Fig. 7. Model of multimode cavity with (a) circuit 
representation and (b) operational simulation. 

RF System Simulation 

Numerical simulation of full RF control-loop behavior 
has been achieved through use of the MATHIXX@ analysis 
package. The appropriate models, both linear and 
nonlinear, of each element were built in block-diagram form 
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decoupling cross-coupled 
network network 

Fig. 8. Basic approach for adding decoupling 
predistortion to a cross-coupled network. 

in this software, and all elements were subsequently 
connected in the same manner. While space does not allow a 
complete description here of the simulated loop, a block 
diagram containing the essential components is shown in 
Fig. 9. The I/Q control loops are placed around the cavity to 

_I ! feedforward 
controller 

error 
sifinalr 

sense 
transport 4 detectors b- 

RF reference 1 

Fig. 9. Typical RF system block diagram 

regulate the accelerating field. Feedforward methods are 
used to ameliorate the erturbing effects of beam loading. 
Also, psuedoderivative eedback is incorporated by sensing P 
the cavity drive signal. 

Detuning of the cavity leads to a strong cross-coupling 
between the I and Q control loops, with resulting 
degradations in stability and performance.2s3 To minimize 
this effect, the I and Q control signals are predistorted as 
described in the previous section in order to decouple the 
control loops. This approach effectively orthogonalizes the 
two feedback control loops. 

The cavity amplitude and phase responses, along with 
their respective loop errors, during a typical acceleration 
pulse are shown in Fig. 10. The cavity begins charging at 
time t = 0, while beam current enters the cavity at 10 us. A 
beam rise time of 10 us is assumed. With this nonzero beam 
current rise time, the loop errors remain small throughout 
the pulse. 

The cavity model in Fig. 5 lends itself to direct 
implementation in hardware. Because the model operates 
at baseband frequencies, the authors will synthesize a 
simulation of this type using either analog computational 
components or digital signal processin 

f 
devices. This 

circuitry will be extremely useful or testing and 
integrating the hardware for various control applications. 

Conclusions 

Reasonable models have been developed for all 
components in the GTA RF control loops. Included in these 
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Fig. 10. Cavity responses and control- 
loop errors during a typical pulse. 

models are beam loading and all significant time responses, 
nonlinearities, and coupling phenomena. A thorough 
numerical simulation of loop performance has been 
achieved using these models. Used as a development tool, 
this approach has been beneficial for loop design and 
o timization, as well as providing insight into the workings 
o F the RF system. Further work remains to incorporate the 
physical dynamics of particle beams into these models. 
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