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Abstract A general prescription is proposed for the study 
of coherent phenomena in electron storage rings due to a local- 
ized nonlinear force. The prescription is based on expanding the 
distribution function into a series using generalized Hermite poly- 
nomials in two dimensions (Stratonovich expansion). When the 
series is terminated at the lowest order, it gives the Gaussian 
approximation. The prescription is applied to strong-strong and 
weak-strong beam-beam interactions in e+e- colliding storage 
rings at the next-to-lowest order approximation. 

1 Introduction 

Recently, the present author proposed a solvable model[lj of the 

bean-beam interaction based on the Gaussian approximation of 
the distribution functions. It illustrated some of the character- 
istic features of the problem qualitatively well. Quantitatively. 
however, there were some disagreements. This seems to come 

from the lack of degrees of freedom of the model, since we repre- 
sented the distribution functions by only three moments. 

We, here, will try one possible method based on an expansion 

of the distribution function into infinite series and truncating 
it at a finite order. In the next-to-lowest order approximation. 
the model presents improved quantitative agreement with the 
multiparticle trackin?. Mainly. this paper is a review of Ref.[2] 
but contains some refinement. 

2 Stratonovich expansion 

ils canonical variables in the Z-dimensional phase-space, we use 

ax 4-9x’ 
x1=+, x2= d , 

where x and x’ are transverse coordinate and its slope, and a and 
~3 are Twiss parameters. 

Stratonovich expansion[3], here, is an expansion of two dimen- 
sional distribution function $(X1,X2) around the two dimen- 
sional Gaussian distribution, 

G(2; g) = -+===== exp -4, 
%\ldet g 

$I = ijg,iixa.Y”. 

where gad is the inverse of g”lii, 

9 ad =< YS” >> 

and det g = g”g’” - (g”)“. Here and in what follows, we employ 
Einstein’s summation convention; when the same symbol 
appears in both rlpper and lower indices simultaneously, a sum- 
mation with respect to t,he symbol from 1 to 2 is implied. We 

start from the following fact. Arty distribution fundion $(I,, 

‘On lravr of absence front KEK, National Laboratory for High Enersy 
Physics. TsukutmIbaraki 305, Japan. 

which is symmetric in phase-space 1+(--x’) = +(.u’)], which is 
norma&ed to unity, and which falls exponentially at infinity, can 
be expanded as 

t)(d) = G(&J)P(&,Q), 

P(.cg,Q) = 1 + -& AQ- ‘a’“H,,,, ..c&Gg). (1) 
11111 

Here the sum extends ouer all even numbers from 4 to infinitiy. 
Here, H is the generalized Hermite polynomial, 

H oL,u *..*,, (2:g) = e’fi(-&,)e-+. 
i=l 

The Q’S are called quasi-moments. For given i,. the quasi- 

moments aTe obtained as 

Q”‘“2 -a,. =< H”‘“? yf;s) >, 

where < > is th.e expectation value with respect to $1 and 

H”‘“?. ‘.%I, _ 
-9 

~liil,f?~? g”.ttiv Hdloz,,,J 
n . 

Note that Q”” = Qad = 0 by definition. 
In this paper, we truncate Eq.( 1) at R = 4. Thus, the distribu- 

tion function $ is represented by 8 parameters, 

k@,Q o’n:uJu’ 1. 

3 Weak-Strong Model 

For the sake of simplicity, we start from the weak-strong case. We 
track the changes of g and Q around a ring. A ring is composed 

of one interaction point (IP) and an arc. 
The betatron oscillation with the radiation effect is represented 

by the following mapping[4]: 

9 4 “CW = X”U~,,U”,,g$f + (1 - X2)E6”“, 

Q-z’ ‘.a., = x”[‘*b, [J”‘,2 . . . ua,; II Qf;1,pI ‘pTi, 

[‘“i = 
c 

cos p sin p 

1 -sinp cosp ’ 

where p is the unperturbed phase advance during the arc. 

X = exp(-l/T,), T, = 
transverse damping time 

flight time during the arc ’ 

and E is the nominal emittance (i.e., without beam-beam effect). 
The beam-beam kick, at the IP, is represented by the following: 

9 ;fw =< (X + F)“(.Y + F)P > . (2) 

Q cY]LI?...cL,, 
new =< HU1a2-‘a7L(? + @;g,,.J > . (3) 

Here. F’ = (0, F) is the beam-beam kick 

F(X) = 8*srj*(exp( -5) - II, 

where 71 is the nominal beam-beam parameter and g!’ = c is the 
g” of the strong beam. To evaluate the r.h.s. of Eqs.(%) and (3), 

we use dloid. 
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Figure 1: An illustration of regions PR:BR and NR. 

4 Intrinsic Singularity 

As in the case of the Gaussian approximation, it is expected that 
the system falls into a period one fixed point in (g,Q) space. 

We can, however, show that there cannot be a steady state in 
some cases. Let us first “assume” that (g: Q) is already settled 
in the steady state (g-% Q”): which refers to (g,Q) just before 
the IP. It is useful to use the following vectors: 

Now, we can show that 

p = 1 _ ,?gg )&A - aLLJ1. 
Y 

Here. 

g’ is g just after the beam-beam kick, R’ is s-vector defined 
by R, = 1(4, n.O,O), S is the (3,5) matrix defined by S,,, = 
1(4,n,4, m) (n and m run from 0 to 4), where 

-r;lv, n, hi, m] = 1 
m!(M -ml! 

< xN-“{P + F(X)}“i[M], >a, 

[< >o is the average with respect to G(-f,g)] and 0 is a (.5,.5) 
matrix 

Ok,! = F ( 4 ik ) ( i ) (-l)k~bcos’-k-b-o/Isink-b+a~, 

where the sum extends over R = {ja.b);a + b = 1, 0 5 c1 ( 
4 - k: 0 < h 5 k}. 

From Eq.(4). it is clear that Q becomes infinite in the region 

of (A, q), where (one of the eigenvalues of) the denominator van- 
ishes. The situation may roughly be illustrated as in Fig.1. We 
divide the region as follows: 

perturbative region (PR): the region around the origin. 

border region (BR): the neighboring region of the curve 
where the denominator of Eq.(4) vanishes. 

nonperturbative region (NR): the region far from the per- 
turbative region. 
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Figure 2: The beam size (gll,‘c) vs 7 in weak-strong case. 

5 Features of the Model 

To track the change of (g,Q) turn by turn, we choose, as the 
initial values. (gc,O), which is the solution of the Gaussian ap- 

proximation adopted in Ref.[l]. F or some parameters, presum- 

ably corresponding to the BR, the system shows strange behavior 
and provides nothing physical. Otherwise, it falls into a period 

one fixed point. In Fig.2, we compared the result of the model 

(solid line) with those of a multiparticle tracking (x’s) and the 
Gaussian approximation (dashed line). Parameters: T, = 142.8 
and tune is 0.15. The solid line is absent for some domain, which 
corresponds to the BR. The agreement is improved compared 
to the Gaussian approximation. Another interesting quantity is 

the normalized excess E z Q 11’1i(g”)2, which is dimension-less , 
and represents a deviation of v from a Gaussian. It is observed 

that E < 0 and (El increases rapidly as 7 increases from 0. After 
the BR. however, it decreases a little and becomes a constant 

(almost 0.75). 

6 Strong-Strong Case 

The method thus far stated can easily be applied to this case in 
a straightforward manner if we employ the same F: i.e., if we 
ignore the contribution from Q. 

We obtain similar results. In Fig.3, we compare the present 
model with the Gaussian approximation and the multiparticle 
tracking. Here, 

R = gll(e- beam)jg”(e+ beam). 

We assume that the two beams are completely symmetric. We 
observe that 

1. The agreement with the multiparticle tracking is improved. 

2. The spontaneous symmetry breaking esists also in the present 
case as in the Gaussian approximation[l]. 

3. The BR exists also. It is represented by the absence of the 
solid line in Fig.3 (b i. 

4. In addition, the excess E of the blown-up beam can be shown 
to increase in the beginning but decrease after the BR and 
saturate eventually. The excess of the not-blown-up beam 
decreases after the BR and does not saturate. 

In the case where the two beams are not symmetric, we ob- 
serve the flip-flop hysteresis as in the case of the Gaussian 

appro.ximation[l]. 
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7 Discussion 

The border region The most characteristic point of the 
weak-strong case is the rapid increase of the beam size at some 7. 

The region of this rapid increase seems to be related to the BR. 
Also. in the strong-strong case, the bifurcation point is in it. The 
BR seems to be related to the heart of the beam-beam interac- 
tion. The BR is due to the truncation of the Stratonovich expan- 
sion. It exists even if we truncate the expansion at higher orders. 
This implies that, to understand the most characteristic points of 
the beam-beam interaction. we should not truncate it and should 
use v itself. The BR is the place where the infiniteness of the 
degrees of freedom of $ manifests itself. 

Outside the BR, the Stratonovich expansion gives reasonable 
approximation and the numerical agreement seems to be im- 

proved more and more when higher and higher order quasi mo- 
ments are introduced. 

Positive definiteness of I/ An unsatisfactory feature of the 

Stratonovich expansion is the fact that, when truncated, J, can 
become negative in some region of phase space. Fortunately, 
in the present problem. The positive definiteness is broken only 
slightly in the tail. This problem can be fatal if Q is large but g 
is small. This in not the case in the present model. 

Luminosity reduction by deviation from a Gaussian 
As stated before. E becomes negative under the beam-beam in- 
teraction. It can be shown that the luminosity is smaller for a 
beam with negative E than for the C;aussian beam with the same 
g”. It is natural since the density function becomes more Rat if 
it has negative E. Thus, when 7 is large, the actual luminosity 

is smaller than that estimated only from g”‘s. The opposite can 
occur when E is positive. For t,he radiation effect in the final 
quadrupole magnet in the TeV linear colliders[5], we can expect 
t,he opposite(61. 
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Figure 3: The R V.S. 7. (a) Results of the Gaussian approxima- 
t,ion. (b) The present model. 
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