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Abstract __- 

With the use of a simple model, it is shown that 
the asymptotic growth of the cumulative beam break-up 
instability is independent of the linear transverse 
focusing. The analysis is extended to include the 
transition from the cumulative to the regenerative 
type, both in the presence and absence of a focusing 
magnetic field. 

Text 

The beam break-up instability (BBU) continues to 
be a critical factor which places a limit on the 
current and on the pulse length in both rf and 
induction accelerators. [l-11] Depending on whether a 
wave with negative group velocity is present to 
provide feedback, BBU may either be regenerative or 
cumulative. [2,4,6] 

Much theoretical effort on BBU in the past twenty 
years has been devoted to the cumulative type, 
(2,3,5,7-11) where the accelerating units are assumed 
to be decoupled from each other electromagnetically. 
Information is carried only by the beam. Under this 
assumption, Panofsky and Bander [‘Z] found that the 
transverse displacement of the beam grows 

asymptotically like exp(at) l/3 at a given distance 
downstream, when the focusing Magnetic field is 
absent. Somewhat later, Neil, Hall and Cooper [5] 
used an entirely different approach and found that the 
asymptotic growth of the cumulative BBU behaves 

instead like exp(bt) l/2 in the presence of a strong 
solenoidal magnetic field. Here, a, b are parameters 
proportional to the beam current. These peculiar time 
dependences, at first sight, are not expected from the 
usual experience of beam-circuit interaction. 

In this paper, we use the continuum model and 
adopt a mode coupling analysis. The asymptotic growth 
is established analytically for both cumulative and 
regenerative BBU, in the presence of a general 
focusing magnetic field. This work was motivated by 
an attempt to understand the origin of the asymptotic 
dependences mentioned above, and by the need to assess 
the importance of the BBU in the two beam accelerator 
concept [12] currently explored at the Naval Research 
Laboratory. To isolate the growth mechanism, we may, 
for convenience, ignore the damping due to the finite 
quality factor Q of the accelerating units, even if Q 
has always played an extremely important role in the 
control of BBU growth. Bearing this in mind, the 
present analytic theory yields three specific results 
which hitherto were not given in the literature. 

First, the asymptotic growth exp(bt) l/2 exhibited in 
the cumulative BBU in the case ot a strong solenoidal 
magnetic field [5] is a result of the coupling between 
the slow beam-cyclotron mode and the cavity mode. 

Second, this growth is reduced to exp(at) 
l/3 as t + m. 

That is, the asymptotic growth of the cumulative BBU 
is independent of the focusing magnetic field---as if 
the focusing magnetic field were absent. Third, the 
treatment of the cumulative BBU is extended to the 
regenerative type with the inclusion of a negative 
group velocity v . The exponentiation factor is 
modified by a qugntity which depends only on the group 
velocity, but is independent of the other properties 
of the structure. Here, we shall present the model 
and the results. The implications will be discussed 
and the details will be given elsewhere. 

Consider a continuous beam with coasting velocity 
v, relativistic mass factor y, and current I streaming 
in a focusing magnetic field of betatron frequency w 
inside a series of identical accelerating units. Le? 
E(z,t) be the transverse displacement of the beam from 
the axis, q(z,t) be a measure of the deflecting force 

produced by the non-axisymmetric mode (with erWot 

dependence) in the individual accelerating units. In 
the continuum treatment of the cumulative BBU, the 
governing equations for E, and q may be written as 
l2,3,131 

c a a 
E+vz I[ ( 

ac a6 
y z+“az )I + WC26 = q(ztt), (1) 

%gJLl- iw,q(z, t) = -irwo3s[(z, t). 

where E is the dimensionless coupling constant 
proportional to the beam current. [14] 

Assuming a dependence exp (iwt - ikz) for the 
solutions, Eqs. (1) and (2) yield the dispersion 
relation 

D(w,k) = [[w - kv)2 - tic2](m - w,) - wo3c = 0, (3) 

which describes the coupling 115,161 between the 
cavity mode (w = w ) and the fast and slow beam- 
cyclotron mode (w o kv = iw ). The asymptotic growth 
of disturbances may be dete?mined from the Green’s 
function [15] 

m 

ss . * G(z,t) = dw dke itit-ikz ,D(w,k) I bweiwt-ik(w)z, 
(4) 

r -m r 

where the Bromwitch contour I lies sufficiently far in 
the lower half complex w plane, and k(w) is the 
meaningfnl solution obtained from the dispersion 
relation D(w,k) = 0. 

w 
When the focusing magnetic field is abfyyt, 

= 0 and k(w) = w/v f (w /v) [w s/((ltw )] . 
SSbstitution of this k(w) ?n (4) Sields ?he following 
asymptotic formula (from a saddle point calculation 
121): 

I I ( G,(z, t) - exp 1.64W 1’3 17 
where 

w = E w 3z2/v2 
0 

(t - z/v), (t > z/v > 0). (6) 

The asymptotic solution (5) was first obtained by 
Panofsky and Bander [cf. Eq. (33) of Ref. (2)]. In 
the other limit, where a strong focusing magnetic 
field is present, the dominant interaction is expected 
to be between the (positive energy) cavity mode (w = 
wo) and the negative energy beam-cyclotron mode, 

[15-17,9] for which w - kv = -oc. In this case, the 

dispersion relation (3) may be approximated by (w - kv 

+ wc)(w - coo) = - Wo3E/2Wc, 

+ EWo3/(2VWc(W - wo)). 

yielding k(w) = (w + wc)/v 

Substituting this k(w) in Eq. 

(4) and performing a saddle point calculation similar 
to that given in Ref. (2), one obtains the asymptotic 
solution 
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IW,t) ( = IGs(z,t) 1 - exp[(2pW/z)1’2], (7) 

where p = v/w and W is given by Eq. (6). 1’Jbe 
asymptotic fosmula (7), exhibiting exp(bt) 
dependence, is easily shown to be identical to the 
growth factor given in Eq. (5.13) of Neil et al. [5] 

For general values of wc, Eq. (3) gives k(w) = 

w/v f [co: + Eco~/((U-~o)I l/2 /v and the saddle point 

contribution may also be calculated analytically. The 
dominant contribution to (4) gives 

IG(z, t) 1 - exp 
i [ 
Re i(z/p)msT (3 + 2ms)] 

I 
, (8) 

where the dimensionless time T is 

T = W(p/z)3, (9) 

and us is the root of the fourth degree polynomial: 

WS3 
(lcw,) = (1/2r)2. (10) 

It is easy to show that there is one and only one root 
of w in Eq. (10) with Im w < 0 for all values of 
T # 6, and we should use thgt root of w in (8). 

The solution (8) implies that, giv&r a focusing 
magnetic field, the asymptotic growth is independent 
of the strength of the magnetic field. To see this, 
consider a time long enough so that 25 >> 1. Then Eq. 

(10) gives ws = (1/2~)~‘~ e-i2n’3 and the solution (8) 

reduces to (5), the formula corresponding to zero 
focusing magnetic field. This is a rather surprising 
result, obtained directly from the model of Panofsky 
and Bander, [2] but is, at first sight, contradictory 
to the findings of Neil et al. [S] 

The above paradox may be resolved by rewriting 
(8) as 

IG(z,t) 1 - exp [ (7.PW/Z) 1’2P(r)] (11) 

0.1 1.0 2 4 6810 100 
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Fig. 1 Comparison of the general solution of p(r) 
with the zero focusing solution p (T), weak 
focusing solution p 
focusing solution p t 

(T), and the gtrong 
T) + 1. 

where p(r) = -(2~)-l’~ Im[w ~(3 + 2w )] is shown in 
Fig. 1. In this figure, th$ strong Focusing solution 
(7) corresponds to p(r) + 1 for ‘c << l/2. The zero 
focusing solution (5) corresponds to P(T) + pO(r) = 

1.1573/?‘6, and the weak focusing solution [Eq. (61) 

of Panofsky and Bander [2]] to P(T) + p,(r) = (1 - 

0.21/r2’3)p (r). The domains of validity of these 
asymptotic golutions and their transitions at ‘c - l/2 
can readily be identified in Fig. 1. 

To include the effects of a non-zero group 
velocity, we replace the factor (a/at - iw )q in Eq. 
(2) by [(a/at -iw ) + v (Waz + ik )]q, whgre (w ,k ) 
may now be taken 8s thegpoint of iztersection of’thg 
dispersion curves o = w(k) in the (o,k) plane between 
the “beam line” and that of the slow wave structure 
formed by the accelerating units, and v = aw/Bk is 

l3 
the group velocity of the structure mode in the 
absence of the beam. With this replacement, the 
Green’s function (4) may again be re-evaluated. In 
the case of no focusing magnetic field, the method of 
steepest descent gives 

1 Gn(z, t) 

whereas in the case of strong focusing, we have 

I I Gs(z,t) - exp (2pW/z)“2 (&-) (1vgt/.)1’2),(13) 

where 8 
f3 

m vg/v. It is obvious that (12) and (13) 

reduce to (5) and (7), respectively, as v + 0. Since 

Bg < 0 for regenerative BBU, it is easilygseen from 

Eqs. (12) and (13) that both Gn and Gs grow like a 

simple exponential function of time [i.e., exp(Ct)] as 
t -+mwhenv <O. This, of course, is consistent 
with what isgexpected from the outset when a backward 
wave interacts with an electron beam. (15,161 It also 
reaffirms the potential danger of the regenerative 
BBU, as exp(Ct) grows considerably faster than either 

exp(at)l’3 or exp(bt) l/2 for large t. Equations ( 12) 

and (13) are also valid when B > 0. 
g 

In that case, 

the BBU becomes convective [15] and the Green’s 

function shows growth only for z/v < t < z/v at a 

given position z by causality. Equations (1;) and 
(13), when compared with (5) and (7), suggest that the 
modification in the exponentiation due to a non-zero 
group velocity depends only on v and is otherwise 
independent of the accelerating gtructure. The value 
of Q required to render BBU harmless is determined 
[13] using these simple expressions. 

Finally, we note the following. First, without 
the help from a finite Q, phase mixing, (due to a 
spread in the betatron frequency, for instance), by 
itself, cannot be expected to suppress BBU in a long 
pulse machine. The reason follows. Since the 
asvmototic growth of the cumulative BBU is shown here 
to be independent of the focusing field, a spread in 
the betatron frequency, as long as it is finite, 
cannot alter this long-time behavior. A direct 
calculation of the Green’s function for a model which 
explicitly includes a betatron frequency spread has 
supported this intuitive argument. Second, large 
convective growth of BBU might occur when the beam 
velocity v happens to be synchronous with the group 
velocity ‘v 

8’ 
as can be seen from Eqs. (12) and (13) in 

the limit 8 + 1. 
B 

This synchronous interaction is 

unimportant for electron linacs but is perhaps worthy 
of some attention in certain ion accelerators (in 
which case the theory needs to be appropriately 
modified.) Third, we have calculated analytically the 
asymptotic growth of the cumulative BBU for an 
accelerating beam, with constant acceleration, in a 
general focusing magnetic field. The results will be 
given elsewhere. Here, we only report that the 
asymptotic growth is also independent of the 
transverse focusing, in the sense described in this 
paper. 

I would like to thank M. Friedman and D. Chernin 
for helpful discussion. This work is supported by the 
U. S. Department of Energy, Contract No. DE-AI05-86- 
ER13585, and by the Office of Naval Research. 

1762 
PAC 1989



5. 

6. 

7. 

8. 

9. 

10. 
11. 

12. 

13. 

14. 

15. 

16. 

17. 

References 
The Stanford Two Mile Accelerator, ed. R. Neal; 
W. A. Beniamin, Inc., New York (1968), p. 205. 
W. K. H. Panofsky and M. Bander, Rev. Sci. Inst. 
39, 206 (1968). 
V. K. Neil and R. K. Cooper, Part. Accel. 1, 111 
(1970). 
R. Helm and G. Loew, Linear Accelerators, Eds. P. 
M. Lapostolle and A. L. Septier, (North-Holland, 
Amsterdam, 1970), Ch. 8.1.4. 
V. K. Neil, L. S. Hall and R. K. Cooper, Part. 
Accel. 9, 213 (1979). 
P. B. Wilson, in AIP Conf. Proc. No. 87, p. 504, 
(American Institute of Physics, New York, 1982). 
G. J. Caporaso, A. G. Cole and K. W. Struve, IEEE 
Trans. NS-30, 2507 (1983); G. J. Caporaso, F. 
Rainer, W. E. Martin, D. S. Prono, and A. G. 
Cole, Phys. Rev. Lett. 57, 1591 (1986). 
R. L. Gluckstern, R. K. Cooper and P. J. 
Channell, Part. Accel. 16, 125 (1985). 
R. J. Briggs, University of California Report No. 
UCID-18633 (1980, unpublished). 
K. Yokoya, DESY Report 86-084, August, 1986. 
R. L. Gluckstern and F. Neri, Proc. 1987 Particle 
Accelerator Conference, p. 1017. 
M. Friedman and V. Serlin, Appl. Phys. Lett. 49, 
596 (1986). 
Equation (2) is actually an approximation to the 

second order equation (a2/.3t2 + uo2)q = 2~w~~aF+, 

when the solution behaves like exp(iwot) times a 

slowly-varying function of t. Likewise, the 

effect of finite Q enters in Eq. (2) by adding 

the term (wo/2Q)q to the left-hand side, and the 

solutions (5), (7), (8), (ll), (12), (13) are 
simply multiplied by the well-known decay factor 
exp(-w t/2Q). 
The co8pling constant E depends on the 
accelerating structure and on the deflecting mode 
under consideration. The configuration treated 
in Ref. 3 consists of a circular waveguide loaded 
with identical apertured disks along the guide 
axis. In that case, E = 0.422(1/17kA)H/y if the 
deflecting mode within the individual cavities is 

:!~h?“!?n 
mode. Here, f3 = v/c, c is the speed of 

the more g eneral configuration treated 
in Refs. (2) and (5), the accelerating units are 
separated by a distance L and the n-th uyit if 
located at z = nL. In that case, E = (v K/u0 L) 
1/(17BvkA) where K is proportional to the 
“transverse impedance” of the structure. [K has 
a unit of inverse length: it is identical to the 
k defined in Eq. (3.11) of Ref. (5)]. Note that 
a is independent of the focusing magnetic field 
but is inversely proportional to y. 
R. J. Briggs, Electron Stream Interaction in 
Plasmas, MIT Press, Cambridge, MA, (1964), Ch. 2. 
See e.g., M. V. Chodorow and C. Susskind, 
Fundamentals of Microwave Electronics, (McGraw- 
Hill, New York, 1964) for a general discussion 
of mode coupling and beam-circuit interaction. 
A. Bers and S. Gruber, Appl. Phys. Lett. 6, 27 
(1965); L. S. Hall and W. Heckrotte, Phys. Fluids 
s, 1496 (1965). 

1763 
PAC 1989


