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Summary 

This review of beam-beam effects in electron and 
proton colliders is divided into two main parts, the 
first devoted to electron-positron colliders and the 
second to proton-antiproton colliders. Both parts start 
with a discussion of recent observations in existing 
colliders. The part on electron-positron colliders 
continues with a discussion of the frequencies of the 
coherent oscillations of the rigid bunches coupled by 
the beam-beam forces, and concludes with a discussion 
of several attempt to understand the nature of the 
beam-beam interaction theoretically. The part on 
proton-antiproton colliders continues with an interpre- 
tation of the observations in terms of the tune spreads 
present in the colliding beams, and concludes with a 
discussion of the observed distribution functions. 

1. Introduction 

This review of beam-beam effects in electron and 
proton colliders consists of two main parts. Chapter 2 
contains the discussion of beam-beam effects in 
electron-positron colliders, and Chapter 3 the discus- 
sion of proton-antiproton colliders. Both chapters have 
their own introductions and conclusions. Chapter 4 con- 
tains final remarks. 

2. Beam-beam Effect in Electron-Positron Colliders 

In this chapter, recent studies of the beam-beam 
effect in electron-positron colliders are presented. It 
is organized as follows: In Sect. 2.1 recent observa- 
tions of the beam-beam tune shift are summarized, in 
Sect. 2.2 the coherent beam-beam effect is described, 
and in Sect. 2.3 theoretical studies of the nature of 
the beam-beam limit arc discussed. 

The luminosity L and the beam-beam strength para- 
meter cy for vertical betatron oscillations play a 
central role in the discussion of electron-positron 
colliders. They are given by: 

NL fk 
L = 4n axay 

re N By 
SY = 7-F y oy(ax+ay) 

(1) 

(2) 

Here, the symbols are defined as follows: re is the 
classical electron radius, N is the number of particles 
in a bunch, 
vertical 

y is the relativistic factor, By is the 
amplitude function, dx and uy are the 

horizontal and vertical rms beam radii, respectively, 
at the crossing point, f is the revolution frequency in 
the collider, and k is the number of bunches in one 
beam (fk is the bunch collision frequency). Both equa- 
tions are derived under the assumption that the varia- 
tion of By, ox and uy .along the beam direction 
can be neglected in the nelghbourhood of the collision 
point. This assumption is well satisfied if the bunch- 
length os is small compared to Bx and By. If this 
assumption does not hold, the strength parameter Sy 
increases [l], and the luminosity L decreases [z]. The 
beam-beam strength parameter for horizontal betatron 
oscillations Sx is obtained from Eq. (2) by replacing 

BY and by 6x 
E,, + 0. EoqY(21 

ands respectively. For 
describes the'firtical tune shift for 

t'est particles' with betatron oscillation amplitudes 
small compared to ux and uy, and is therefore often 
loosely called the beam-beam tune shift. 

Eq. (2) may be used to eliminate one power of N 
from Eq. (l), casting it into a form which shows both 
limitations on the performance of electron-positron 
storage rings, (i) the bunch current I and (ii) the 
beam-beam strength parameter sy, in the approximation 
oy +c 0x9 and with the electron charge e: 

Iv cyk 
L = 2ereBy (3) 

An absolute measurement of the quantities entering into 
Eq. (3) is cne way of determinins cv. In EQ. (3) it 
is as‘sumed that it-is possible to adjl"st the beam‘radii 

and o such that the beam-beam strength limit 
it is justYreached at the bunch current I. 

2.1 Recent observations in electron-positron colliders 

Two new electron-positron colliders have recently 
come into operation, TRISTAN at the KEK Laboratory in 
Tsukuba, Japan 131, and BEPC at the Institute of High 
Energy Physics in Beijing, China 141. Their relevant 
parameters and observations of the beam-beam strength 
parameters are summarized in Table 1. It should be 
noted that the current quoted in [3] is the total 
current in both beams. 

BEPC Tristan 

Energy E/GeV 1.6 26 
Bunch current I/mA 16 2.2 
Circumference C/m 240.4 3018 
Vertical damping time -ry/ms 46 3.2 
Amplitude fct. fry/m 0.085 0.1 
Bunches/beam k 
Luminosity L/1030cm-Ls-' 

1 2 
2 7.2 

Beam-beam strength cy 0.031 0.032 

Table 1 - Parameters of electron colliders 

Comparing these data to a compilation L5] of 
beam-beam strength limits cy shows that the observa- 
tions in the new machines fall into the range of the 
observations in earlier machines. This confirms the 
opinion that the beam-beam strength parameter a good 
variable for describing the beam-beam effect because it 
shows relatively little variation over machines in a 
wide range of energy and size. 

2.2 Coherent beam-beam effect 

The coherent beam-beam effect describes the motion 
of the centres of gravity of rigid electron and posi- 
tron bunches in a storage ring. In the usual approxima- 
tion, the bunches perform linear oscillations between 
the collision points, and are coupled by the beam-beam 
forces at the collision points. Much confusion has 
arisen because different authors have made different 
assumptions about the ratio between the number k of 
bunches in one beam, assumed to be equal to the number 
of bunches in the other beam, and the number of colli- 
sion points nx: some authors take nx = k, and 
others take nx = 2k which corresponds to practical 
operating configurations. In this paper, I shall use 
nx = Zk, as in my earlier writings. 

2.2.1 Linear theory. If the beam-beam force is 
linearized, the stability of the bunch motion can be 
investigated separately in the horizontal and vertical 
plane, and be reduced to a computation of the eigen- 
values of matrices of order 4k which are products of 2k 
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(2x2) block-diagonal matrices describing the bunch 
motion in the arcs. alternatinq with 2k kick matrices 
describing the bunch collision;. In the simplest case, 
with k = 1, one finds two modes. The a-mode has the 
frequency Q of the betatron oscillations in the absence 
of the beam-beam collisions; the n-mode has a higher 
(lower) frequency for particle-antiparticle (particle- 
particle) collisions, approximately given by: 

Qn 2 Q. + nx 6Qy (41 

Here 6Qy is the coherent beam-beam tune shift due to 
a single beam-beam collision. For k > 1, there are 2k 
modes, but there remains a mode with the unperturbed 
frequency Q, and a mode with the largest frequency 
shift which is still given by Eq. (4). 

Piwinski 161 and Chao and Keil [7] obtained the 
beam-beam kicks 61yf from the beam-beam strength 
parameter cy: 

&;1* = t 4rSy(y+-Y-) 
BY 

Here the indices - and + label the electron and posi- 
tron beam. This leads to a coherent beam-beam strength 
parameter SQ 
one 6Qy = i 

which was exactly twice the incoherent 
cy. Hence, the tune difference between 

the pi- and a-modes for k = 1 becomes approximately 
;lrFd Tf~~~;u_l;,of thumb is only an approximation, 

161 gives the exact expression. 

The frequency difference between the TI and 0 modes 
was also observed in electron-positron colliders L81 
and obtained by Fourier analyzing the motion of the 
bunch centres in a multi-particle beam-beam simulation 
19, 101. An example of such a simulation is shown in 
Fig. 1. In both cases it was found that the frequency 
difference Q, - Q0 was about 2/3 of that expected 
from Eq. (4). 

This discrepancy can be understood. The incoherent 
beam-beam tune shift is due to the kick which a test 
particle receives when it travels through the bunch at 
a distance y < u . 
beam-beam tune shi t + 

What matters for the coherent 
GQy.is the kick which a whole 

test bunch receives when it travels through the bunch 
at a distance y < ay, obtained by integrating the 
kick over the whole test bunch with a weight 
corresponding to the density distribution in it. Talman 
181. Hirata 1111 and Hofmann and Myers 1121 have done 
this integration and obtained a coherent beam-beam 
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Fig.1 - Frequency spectrum of coherent vertical Fig.2 - Coherent horizontal bunch oscillation. Solid 
beam-beam oscillations for k = 1, n, = 2, line: equilibrium Gaussian, dashed line: 
Qx = 1.25, Sy = 0.0357. coherent oscillation with c.m. shift 0.10x. 

strength parameter 6Qy which is a factor of two 
smaller, “Qy = 
the result, 

cy,. for y+ - y- < dy, leading to 
in the limit cy + 0: 

Qn - Q. = n&y (6) 

2.2.2 Nonlinear theory. In nonlinear theory, the 
forces due to the beam-beam collisions are used to 
construct the Vlasov equation of the particle distribu- 
tion in action-angle variables. Averaging over the 
angles, an integral equation is obtained, in which the 
ratio of the coherent and incoherent beam-beam strength 
parameters appears as an eigenvalue Xy = 6QylSy. 
Expanding into orthogonal polynomials, the equation for 

becomes a matrix eigenvalue problem after trunca- 
kuon to finite order. Meller and Siemann 1131 used 
Legendre polynomials and found Xy =. 1.34. Yokoya 1141 
used Laguerre polynomials and obtained the values of 
AX = SQ,/E, and Xy = &Qy/Ly as functions of 
the axis ratio parameter r = oy/(ux+uy). His re- 
sults can be fitted to better than a percent by the 
following expression: 

while 

.330 - 0.370r + 0.279r' Xx(r) = 1 

xY 

(7) 

,(r) = Xx(1-r) (8) 

An amusing by-product of this calculation is shown 
in Fig. 2, a coherent horizontal oscillation with the 
eigenvalue ix and an amplitude of 0.1 crx. It may be 
seen that the mode does not involve a shift of the 
Gaussian density distribution as a whole. Instead, the 
core of the beam oscillates and the tails remain 
practically stationary. 

2.3 Beam-beam limit 

In the early 1980's, several multi-particle simu- 
lations of the beam-beam effect 115, 16, 17, 181 had 
obtained satisfactory agreement with experimental 
data. They all used the strong-strong model in which 
the beam-beam forces act on both beams and modify their 
motion. This is in contrast to the weak-strong model 
where the particles of the weak test beam are subject 
to the forces of the strong beam which itself is not 
affected by the forces of the test beam. More recently, 
there has been less activity in beam-beam simulation. 
Instead, there have been several attempts to obtain the 
beam-beam limit by analytical methods, which I shall 
discuss now. 

0.2 - 

0.0 ' ' ' ' I ' ( ' ' ' -2 -1 0 1 2 
x 
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For 0 < p < 0.4, both beams have the same size which 
shrinks with increasing P, presumably due to the 
dynamic 5 effect which reduces B at the collision point 
while 50 increases for the tune of the example. Between 
0.4 < p < 1.4, i.e. 0.06 < 50 < 0.21, the map is unsta- 
ble. Iteration of the map just above 50 = 0.06 shows 
chaotic behaviour, i.e. the beam radii vary from turn 
to turn with no apparent regularity. At p = 1.4, 
50 = 0.21, a bifurcation occurs, and the sizes of the 
two beams become vastly different, one is blown up, the 
other one shrinks. The beam size is stable between 

2.3.1 Maps of the second moments of distribution 
functions. An ideal solution to the dynamics of two 
collidinq beams must be self-consistent. i.e. the 
phase-space distribution functions of both- beams must 
satisfy the Vlasov equation at all times, and the 
forces seen by any particle must be obtained from the 
distribution function by the Maxwell equation. This 
formidable problem has been looked at in various 
approximations. 

Hirata 1191 and Furman, Ng and Chao 1201 have 
studied the one-turn maps for the second moments of the 
distribution functions in colliding beams. The ingre- 
dients of their calculations are: 

(i) Beam-beam kicks which are functions of the 
size of the opposite bunch. Hirata calculates the 
forces for a Gaussian density distribution. Furman, Ng 
and Chao assume that the force is linear. 

(ii) Radiation damping, described by the decrement 
6 < 1 between collisions. 

(iii) Quantum excitation which compensates the 
radiation damping such that an equilibrium is reached - 
in the absence of beam-beam forces - at the unperturbed 
beam dimensions. 

(iv) Linear transformations with phase advance 2nu 
between the kicks. In both papers, one beam-beam 
collision is assumed in a revolution. 

In either case, a map is obtained which describes 
the transformation of the canonical scaled variables 
(q+, pk) through one revolution. It is transformed 
into another map which describes the transformation of 
the lowest moments <qtL>, <q?P*> and <pk-% 
through one revolution. This map is non-trivial because 
it not only operates on the moments, but also contains 
them in the coefficients. 

Since Hirata applies a nonlinear force derived 
from a Gaussian distribution in phase space, he 
introduces an inconsistency with the Vlasov equation 
into his calculation because a Gaussian distribution in 
phase space cannot remain Gaussian under the influence 
of a nonlinear force. Furman, Ng and Chao avoid this 
difficulty by assuming a linear force, thus ignoring 
the Maxwell equations altogether. Their approximation 
only holds for particles with amplitudes small compared 
to the rms beam radii. It overestimates the force on 
all particles, and by a large factor that on particles 
in the tail of the distribution function at several rms 
beam radii. 

Hirata finds the map for the moments in the case 
of round beams, Furman, Ng and Chao find it both for 
round and flat beams. They then proceed to obtain the 
fixed points with period one, i.e. stationary solutions 
for the moments which repeat on every revolution. 
Furman, Ng and Chao also 'linearize the map in the 
neiahbourhood of the fixed point and analvze its stabi- 
lity. Both authors iterate the map for many revolutions 
and compare the results to those of their analytical 
results. The map depends on the following parameters: 

(i) The phase advance 2nu between collision 
points, or the tune U. 

(ii) The damping decrement 6 between collision 
points, or the parameter X = exp(-26). 

(iii) The unperturbed beam-beam strength parameter 
50 3 calculated in the absence of changes to the rms 
beam radii. 

(iv) The beam shape, flat or round. 

An example of results is shown in Fig.3 taken from 
\',;!ti;; i;v;s the rms beam-size for a flat beam as a 

o. The abscissa is p= 4nS0/(1+X)=6.722 50. 

1.5 < P < 2.0. Hirata 1201 observes a similar bifurca- 
tion, and relates it to the flip-flop effect, where one 
beam is indeed blown up and the other one shrinks, 
which has been observed in SPEAR [21] and in computer 
simulations 1181. In SPEAR, the effect was observed for 
co > 0.025. In simulations, the flip-flop effect has 
been observed for 50 = 0.06, i.e. a factor of 3.5 
smaller than in Fig. 3. 

50.0 Fr- ~,~,-~l--i.-l.~-,-,,---‘-i~“‘-‘~’ T I ] 

10 .- __ 

05 / d~:dIll~~L~l 
0 05 1 1.5 2 25 3 

P 

Fig.3 - RMS beam sizes and stability for the period-l 
fixed point solutions (solid = stable, dots = 
unstable).Flat-beam case, u = 0.15, i = 0.8694. 

By iterating the map, Furman, Ng and Chao also 
find fixed points with period two, three and four which 
Hirata does not find. This is believed to be due to the 
different assumptions about the beam-beam force. 

Hirata 1221 has developed a technique to include 
higher than the second moments. The results are not 
very different from his earlier results [19]. 

2.3.2 Renormalized theory. A renormalized theory 
of the beam-beam interaction in electron-oositron 
colliders was developed and implemented by Chin 123, 
241, who calculated an approximate solution to the 
Fokker-Planck equation for the stationary particle 
distribution function. The formalism avoids the secular 
terms of conventional perturbation theory which cause 
it to diverge in the neighbourhood of resonances if the 
perturbation series is truncated after a few terms. 

The formalism is derived in the approximation of 
one-dimensional motion, i.e. a round beam, and of 
collisions between a weak test beam with a strong beam 
with Gaussian density distribution. The result is the 
distribution function P(1) in terms of the action I for 
the weak beam. In principle, the knowledqe of the 
distribution function, including its tails,-allows to 
calculate the beam lifetime in the presence of the 
beam-beam effect, and therefore to establish a relation 
between the observation in eyisting machines that the 
lifetime suddenly drops when the beam-beam strength 
parameter 5 exceeds a given value. 
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The formalism is implemented in a computer 
program. An associated tracking program allows a 
comparison between theory and simulation. Fig. 4 shows 
an example of the results in a region of tune space 
with only high-order resonances and a rather high *value 
of 5. The density distribution is more exponential than 
Gaussian and the agreement between theory and simula- 
tion is very good. Another characteristic feature of 
this theory is pedestals in the distribution function 
when strong low-order resonances occur at a few rms 
beam radii. 

loo 

b Compulnr dmul~llon 
- Anllyllc rDwll 

Qew~lm d~lrlbullon 

10‘" 
0 1 2 

Amplitude3 / 0 
4 6 

Fig.4 - Particle distributions for v=O.O8 and 5=0.16. 

2.4 Conclusions for electron colliders 

Two new machines, TRISTAN and BEPC, came into 
operation recently. From the point of view of beam-beam 
effects, they show no surprises. The coherent dipole 
beam-beam effect has been worked on for nearly twenty 
years. There now is a consensus how it should be 
calculated, and agreement between theory and 
observation. Several interesting attempts to explain 
the beam-beam have been published. The authors needed 
drastic simplifications, i.e. one rather than two 
dimensions, simple forces, lack of self-consistency, 
weak-strong model, to deal with the mathematics. This 
makes it difficult to compare theory with observations 
in existing colliders to check their validity, and to 
exploit their predictive power. However, the removal of 
all simplifications is a formidable problem which might 
not ever be solved. 

3. Beam-Beam Effects in Proton Colliders 

In this chapter, recent studies of the beam-beam 
in proton-antiproton colliders are presented. It is 
organized as follows: In Sect. 3.1 recent observations 
are summarized which are discussed in Sect. 3.2 in 
terms of the tune spreads and density distribution of 
the beams. 

In contrast to electron-positron colliders where 
the colliding beams are flat, the colliding beams in 
proton colliders are usually very nearly round. Assu- 
ming that this holds exactly, i.e. that the rms beam 
radii are equal, ox = d ry. 3 0, and that the ampli- 
tude functions at the co1 ision points are also equal, 
5x = By = 8, the equations for luminosity L and the 
beam-beam strength parameter 5 may be written as 
follows, assuming also that the proton and antiproton 
beams are equal: 

L=NLfk 
2d 

&!!l&Y=Nrp 
4nyol c 

(10) 

Here r 
P 

is the classical proton radius. The second 
form o Eq. (10) is obtained by introducing the norma- 
lized emittance E = 4nyoz/B, which is an invariant 
during acceleration in a proton synchrotron, in the 
absence of beam blow-up. Therefore, the beam-beam 
strength parameter for head-on collisions is also inde- 
pendent of energy. Note that the normalized emittance 
is defined with a numerical factor 6n at Fermilab. Of 
course, Eqs. (1) and (2) remain valid for protons and 
may be used when ox # dy and/or Bx f By, 

3.1 Recent observations 

In this section I shall summarize recent observa- 
tions in the SPS at CERN 1251 and the Tevatron I.261 at 
Fermilab. Table 2 shows the relevant parameters and 
observations of beam-beam strength parameters in the 
two machines. It calls for a series of comments: 

(i) There are 12 head-on beam-beam collisions 
around the Tevatron, but only 3 head-on collisions in 
the SPS because the beams are horizontally separated 
over most of its circumference. 

(ii) In both machines, the bunchlength is not 
small compared to B, hence the luminosity is 2/3 of the 
figure which can be calculated from Eq. (10) and the 
data in Table 2. 

(iii) In both machines the proton bunches are more 
intense and have a larger emittance than the antiproton 
bunches, such that the beam-beam strength parameters 5+ 
and 5- differ by less than a factor 3/2 which brings 
both machines into the strong-strong configuration. 

Energy E/GeV 
Part./bunch N/10" 
Bunches/beam k 
Norm.emittance E pm 
Bunch area A/eVs 
BB strength c,/lO-: 
BB strength sy/19- 
Luminosity L/cm- 5-l 

SPS Tevatron 

-_____- 
Table 2 - Parameters of proton colliders 

3.2 Interpretation 

3.2.1 Tune spreads. The observations in the SPS 
and the Tevatron agree that the tunes must be kept bet- 
ween two resonant values, and this must be done for all 
particles in the beam including any tune spread which 
they may have. Both machines operate in the neighbour- 
hood of the coupling resonance IQxl=IQyl where I..1 
denotes the fractional part. The particular regions se- 
lected are shown in Table 3, together with their width 
and the lowest order resonance inside the region. There 
are two main sources for tune spread: 

~~~~~~~~~ 

Table 3 - SPS and Tevatron operating regions 

(i) The beam-beam effect causes a tune spread of 
the order of 5 for each head-on collision, and a 
smaller value for each separated collision. In the 
Tevatron, all collisions are head-on and the total tune 
spread AQ is approximately AQ = 125. Accurate calcula- 
tions, taking into account the amplitude functions and 
dispersions at the collision points yield slightly 
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smaller values. The tune spread is independent of 
energy. Comparing the tune spread to the space between 
resonances leads to the beam-beam limit c < 0.0024, 
quite close to the observed values shown in Table 2. 
Indeed. it is found in the Tevatron that the beam emit- 
tance ; must be larger than a minimum value and/or the 
bunch intensity N must be smaller than a maximum value, 
such that their ratio N/E, which is proportional to 5, 
stays below an upper limit. In the SPS, the bunches 
collide in three, and are well separated in the remai- 
ning nine collision points. Hence, the total tune 
spread AQ = 35. Comparing this to the space between 
resonances leads to the beam-beam limit 5 = 0.01, while 
the actual observed value shown in Table 2 is about 
half as much. 

(ii) A second source of tune spread is the direct 
space-charge effect (Laslett tune shift) which causes 
particles with large synchrotron oscillation amplitudes 
to experience the full tune shift when they are at the 
centre of the bunch and hardly any tune shift at all 
when they are at the head or tail of the bunch. In the 
SPS, this effect causes a tune spread AQsc = 0.035 at 
the injection energy, 26 GeV. It is comparable to the 
space between resonances and therefore believed to 
present an upper limit on the bunch population 1251. 
A closer look reveals that the direct space-charge 
effect in the approximation of round beams, neglecting 
the contribution of the momentum spread to the beam 
size, is proportional to the ratio N/E, called the beam 
brightness at Fermilab, as is the beam-beam strength 
parameter 5. Since for given N/E the direct space- 
charge effect scales like y-z it is unimportant in the 
Tevatron with injection at 150 GeV. 

3.2.2 Density distributions and lifetime. Observa- 
tions at the Tevatron 1261 show that the density 
distributions of both proton and antiprotons are very 
well approximated by a Gaussian at injection. Once the 
beams are accelerated and the amplitude functions B 
squeezed to a low value, the density distribution of 
the protons remains a Gaussian, while the distribution 
of the antiprotons is higher in the core, narrower in 
the flanks, and higher in the tails than a Gaussian 
with the same area and standard deviation. 

Observations at the SPS [25] show a clear depen- 
dence on the ratio of the proton and antiproton emit- 
tance. In 1987, the proton emittance was about four 
times the antiproton emittance. This not only reduced 
the proton lifetime at the beginning of the coast to 
less than 10 hours, but also created intolerably high 
backqround rates for the physics experiments. In 1988, 
the proton emittance was about a factor of two smaller 
than in 1987, and the emittance ratio less than two. 
Within minutes after the start of a coast, the proton 
lifetime increased to about 50 hours and the background 
became tolerable. It should be remembered that the 
luminosity lifetime in the SPS is limited by intra-beam 
scattering 1281. 

For the SPS, this behaviour is explained by the 
presence of high order nonlinear resonances within the 
tune spread (5/12 in the Tevatron, 11/16 in the SPS). 
Their widths increase with the amplitude of the test 
particle, and the maximum width moves to higher ampli- 
tudes as the order increases [27j. When the emittance 
of the test beam is larger than the emittance of the 
driving beam, more test particles reach dangerous 
amplitudes than in the case of similar emittances. 

3.3 Conclusions for proton colliders 

Both proton colliders, SPS and Tevatron, operate 
with more intense and larger proton than antiproton 
beams, such that the beam-beam strength parameters 
acting on protons and antiprotons, ct and c-, are 
almost balanced for the SPS, while for the Tevatron 

c- = 312 ct. Both machines exploit the tune space 
between resonances of moderate order: the SPS for 
accommodating the direct space-charge tune spread at 
injection, 
tune 

the Tevatron for accommodating the total 
spread due to twelve beam-beam collisions. 

Therefore, the Tevatron is limited by the beam-beam 
effect while the SPS is not. The SPS observes that the 
narrower antiproton beam causes losses from the tails 
of the wider proton beam and a lifetime reduction, 
while the opposite is observed in the Tevatron. 

4. Final remarks 

Beam-beam effects in electron and proton colliders 
are a field of active research. Much has been learned 
from observations. In electron colliders the beam-beam 
limit stabilized around cy = 0.03, while in proton 
colliders it is determined by the tune space available 
between resonances of moderate order. Novel theoretical 
techniques for studyinq the beam-beam effect in 
electron 
models. 

colliders have- been tried on simplified 
They hold the promise of eventually explaining 

the beam-beam limit if the difficulties associated with 
more realistic models can be overcome. 
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