
STANFORD LINEAR COLLIDER HISTORY DATA FACILITY*

RALPH JOHNSON

Stanford Linear Accelerator Center
Stanford University, Stanford, California 94309

ABSTRACT

To effectively maintain the operation of the Stanford Linear
Collider the variation over time of control‘system device param-
eters and feedback loops must be known. Device status must
reflect unwanted variations as well as current states. This pa-
prr discusses the software facility which provides the collection
and display of history data, and the determination of a behav-
ioral status. The facility’s operation, internal design, and user
interface are described.

1. INTRODUCTION

The Stanford Linear Collider History Data Facility is used
to save the history of control system parameter values and to
monitor the “behavior” of those parameters. Any device which
is defined in the control system database may have the history
of its parameters or state and.severity saved. Data are saved
in ring buffers so that the latest data replaces the oldest. The
facility consists of several processes and a number of related files
are shown in Fig. 1. The definitions of devices to be saved, and
the descriptions of how to save them and how to use them for
error determinations, are contained in text source files. These
files are separately compiled to produce data files which are then
installed in a continuously-executing history process for data
collection. Data saved in files can be retrieved and used by
applications programs. A number of plots are in use on the
operations displays.

Compile
Process

(HSTBCMP)
1

9-S’

.

Common SLC
Arrays Database

Fig. 1. Ilistory data s&cm.

2. SOURCE FILE

The format of the lines in the text file is generally that
of the DEC (Digital Equipment Corporation) CL1 (Command
Language Interpreter) format. Device definitions and save spec-
ifications are grouped into sections which produce correspond-
ing sections in the data file. Different sections may save values

‘Work supported by the Department of Energy, contract
DE- AC03-76SF00515.

at different intervals and have different numbers of datapoints.
Likewise, different sections may specify different types of behav-
ior checking. The general order within each section is to include
a number of text lines to define a set, of device parameters, fol-
lowed by a specification of how often to save their values and
how many values to save. For example:

DEFHSTB /DEV=(QUAD, LIOZ, 131, BACT)

DEFHSTB /DEV=(BEND, LI12, 552, BACT)

HSTBMON /INTERVAL=300 /POINTS=144

DEFHSTB /DEV=(QUAD, LI’L5, 900, BACT)

DEFHSTB /DEV=(QUAD, LI25, 901, BACT)

HSTBMON /INTERVAL=900 /POINTS=lOO.

The source file information is translated and written to a
corresponding binary data file by a separa.te compiler process.

3. DATA FILE

A general diagram of the data file is shown in Fig. 2. This is
a direct access unformatted file composed of a header, a queue
of unit parameters to saye: a database namedef area, a database
index area, a database data area, a timestamp area, and the
saved value area.

DATA FILE

Device
Queue

Internal
Database

Saved
Tim&s

9-87
5856112 \ xgdE~ta]

Fig. 2. Data filr.

The file headrr contains pointers to the otllcxr areas of the file
and contains section data which includes the number of points
to save and the save intervals.

The device related queue structllre contained in the tlat,a
file is shown in Fig. 13. The qucurs are used to sequentially save
device parameter values. There is a primary queer of section
nodes. Each s&ion notlc contains the next time t.o save dat,a

CH2669-O/89/0000-1716$01.00@1989 IEEE

© 1989 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1989

for the parameters in its device queue and information needed
to control the saving and processing of the data. These nodes
also contain a pointer to a secondary queue of device list blocks
which contain the speciftcations of all device parameters to be
saved in that section. The unit list blocks contain the device
name, subdevice name, area or micro where the device is lo-
cated, a list of device units, the parameter name, and the name
of the class of the device.

S$:;el - Unit - Unit
List

List -----*

- Block Block 1 Block 2 ---;
Le.

1 (if needed)]

1 1 Channel List 1

1 (if f%%!d)]

i
9-87

5866A3

Fig. 3. Section and unit list queue.

The data area of the file contains a separate ring buffer
of data points for each data section of the file. All data for
all device units for a given point in time is contiguous in the
order of the units queue specification. Thus each “data point”
is a block whose length is the length of the format of the data
times the number of parameter values in the section. It is these
blocks which are the elements which are circularly saved, the
oldest block overwritten by the newest.

The timestamp area of the file contains a separate ring
buffer of pairs of timestamps. There is one pair of timestamps
for each of the “data points” or value blocks in a file section.
As with the data, these timestamp pairs are the elements which
are circularly saved. The first timestamp of each pair is the
time that the value of the first device parameter in the queue
of paramet,crs was saved; the second is the time the last device
parameter value was saved. Thcrefor. a timespread is associ-
ated with each “data point”. An application can use the first
timestamp or tile mean time as the time of a value, and can
show the error in the time, if desired.

A database is contained within the data file for the purpose
of direct access to data relating to a single given device param-
eter which is being saved. This provides a more rapid means
of retieving the data than scquencially searching through the
queue of devices and units. The database is composed of an
indrx structure of three levels, as shown in Fig. 4. Each level
is an array of structures. To retrieve values the device name,
etc.: are converted to numeric equivalents. Then the first level
is sparchecl to find the device/subdevice-area combination. The
number of units for the combination and their location within
the second lcvcl are used to search within the second level for
the unit. The number of parameters for the unit and their lo-
cation within the third level are used to search within the third

level for the parameter. The number of words of data and their
location within the value array are used to retrieve or save data
which specifics the section number containing the device pa-
rameter, its location in the section ring buffer, and the current
numl)er of d&a points. This information provides direct access
to tile list of values (and associated timestamps) for a given
device parameter specification.

PrimsTrea Unit Data
Lists

Payyseter
Lists

PA(l)*- U(l)* l P(l) l
l List

z
. . 1
:

PA(n)---- U(n) --
r

- U(l)*-- --c P(l)&
:

Uh --

I I I I
I

List

P(l)
F-j

%

:

6)

9.87 List

5866A4
n

Fig. 4. Internal database index structure.

4. DATA COLLECTION AND SAVING

The monitor process waits for either a message or the ex-
piration of a timer. If there is a message, it will call the ap-
propriate routine to perform data retrievals or file installations,
rrsets, and removals. If the timer has expired, the update time
will be checked for all sections of all files. After processing all
files the timer is requeued using the minium of new section up-
date times. For each section, the “data point” beginning time-
stamp is saved in the timestamp ring buffer, the data process-
iug for all units in the section is performed, and then the ending
timestamp for the “data point” is saved in the timestamp ring
buffer. .4fter data for each file section is saved, the main pro-
cess loop is called to see if there are any waiting messages; this
is to improve the response to user requests should there bp a
large number of units to be processed.

The processing of the unit list blocks consists of looping over
all channels of all units in each list. The values are obtained
from the control system database and saved in the “data point”
value block in the data ring buffer. Point counts are updated
in the internal database, and any behavioral checking is done.

During the initial pass of processing a newly-installed data
file, the routines which get values from the internal or control
system database use the supplied device, area, parameter, and
channel names to obt.ain and locally save pointers to the needed
data. The translation of narnes to low level pointers is very time
consuming. Since subsequent file processing is done in the same
sequential order, the saved pointers can be used, eliminating
much unneeded overhead.

5. STANDARD DEVIATION CALCULATION
AND USE

For most of the parameters saved, WC maintain the standard
deviation from the mean value for the sets of saved values. Af-
ter saving each new value, a new deviation value is calculat,ed.
If the deviation is greater than the parameter’s deviation tol-
erance, a flag bit 1s set for the device in the control system
database. Other processes can use the flag to warn operators,
and the state of the device’s “behavior” can be included in de-
vice displays.

The algorithm used to calculate tllc deviation is ow whcrc
the deviation is exponentially damped with a l/e period of a

1717
PAC 1989

set number of points. It weights the most recent data and
provides a deviation which is meaningful for determining device
“behavior”. Operational diagnostics require that the deviation
is responsive to recent values. However, device maintenance and
design is better served by having longer term histories. By using
a heavily weighted algorithm, longer histories can be kept but
only the effects of the recent data points will effect the current
deviation value. This algorithm is used rather than calculating
the deviation from the actual set of values because older values
are not readily available when a new value is saved. To use the
list of current values would require too much cpu time since
the system is designed to minimize the cpu time needed to sa.ve
values rather than to retrieve them.

6. DATA RETRIEVAL

A function is available for inclusion in a process to retrieve
a set of saved parameter values for a given device. The function
requires device, subdevice, area or micro, parameter, and chan-
nel names; the unit number; and the history file name It must
also be given the address of a standard data retrieval structure
where tile data are to be deposited. This function sends a mes-
sage co;rtaining the above information to the history process.
The history process uses the data file’s internal database to
retrieve the requested parameter valrres and associated times-
tamps from the file and return them in a reply message.

7. DATA PRESENTATION

Plots of history data for operations use are viewed on the
operations console display screens; a typical one is shown in
Fig. 5. They are labeled with the device and parameter name.
The horizontal axis is labeled in hours. Various other data are
also displayed such as the data maximum and minimum values,
the time of the last data point, the number of intervals, and the
standard deviation value. The plots are generated as graphic
elements of a general purpose display facility. Their layout is
defined in a source file of the same type of syntax as t,he history
source file discussed above. They are selected by buttons on
the console touchpanels where an operator can also change the
vertical scaling and the time interval of the data plotted.

8. UTILITIES

A utility process can be used to install a data file to be
monitored. File installation consists of opening and loading
the specified file into memory, and setting a flag so that it is
processed imnrcdiately. The utility can also be used to reset
a file so that the point count, is set to zero and the data are
effectively erased. The utility can also be used to remove a
file from being installed or to list, all files which are currently
installed.

HISTORY

KLYS Ll12 61 PHAS
4 I I I I

3-l

Phase PLIES +/- Mean Tolerance
._,_

zc 2

L?

&

w 0

2

B -1

1: 1.. I .ph~s,pn.s +,~M~~~Tol,,,“ce i

0” 0” =: 0” z” 0 ‘D ?I 8 2 iis
389 HOURS 56845

Fig. 5. History plot euzmple.

To obtain a list of the values which have been saved for a
given device parameter, a dump process prompts for the file
name and the device specification. The output is written to a
logical name, which can be assigned as the user desires. The
output contains the values, the timestamps for each value, the
number of values, the file and device specification, the data
format, length, and interval, and the time of the first and last
data points.

9. ARCHIVING AND LONG TERM HISTORIES

We are currently saving all magnet output values and the
difference between the actual and desired values, all klystron
parameters, most temperatures, some timing values, and nrany
miscellaneous parameters. hlost data is saved each six minutes,
and the number of points saved provides a one day history. This
uses about 5% of the CPLJ time. We have not yet implemented
a facility to archive and retrieve data for periods of days or
months. We plan to begin taking one-week histories as soon as
possible and are discussing methods of saving data sets once a
day or week.

ACKNOWLEDGEMENTS

Mike Glaviano and Linda Hendricltson corrtributed t,o the
plot-scaling software, and Tom Ilinrcl cont.ributcd the standard
deviation calculation algorithm.

1718

PAC 1989

