
MOPS - A DATA STRUCTURE MANAGERlF:NT SYSTEM FOR THE
L,EP/SPS C’ONTROI, SYSTEM

SPS Division, CERN 121 I (icnc\a 23, Switzcrlancl

Abstract

The MOPS data structure management system has been
developed for the LEP,SPS control system and is designed to
support the programmers in organising their data in a struc-
tured fashion. MOPS data structures can be accessed from
FORTRAN 77 as well as from “C” programs and therefore
al!ow the easy exchange of data between programs written in
different languages. The data structure contains a full de-
scription of all data elements and their logical relations and
simplifies the transfer across networks with different comput-
er systems and data representations. A description of the
data structure and the basic philosophy are presented.

INTRODUCTION

The design and operation of an accelerator requires a large
set of programs with substantially different structure and
functionality (e.g. simulations, calculation of Twiss parame-
ters, closed orbit corrections, beam diagnostics, etc.) and
which are often written in different languages. The portabil-
ity of the programs as well as the portability of the data be-
comes a very important issue and the integration of these
programs into a coherent system requires a standard proce-
dure for the exchange of data between the program modules.
The standard high level programming languages (e.g.
FORTRAN 77, C or PASCAL) provide very few tools and
the data organisation is entirely left to the programmer. The
data may be passed through many modules of a program and
its structure must be designed with great care. In addition,
the memory space and the data structures are allocated at
compilation time resulting in a static data organisation. For
the analysis of high energy physics experiments several data
management systems have been designed [1, 21 and are wide-
ly used with FORTRAN 77.

In order to achieve an efficient and fast communication and
to minimise the system resources needed we have studied the
requirements for a standard data organisation for the SPS
control system and we have defined the following properties
for a new data structure:

The data must be portable between different high -
level languages (e.g. “C” and FORTRAN 77).
It should be possible to mix data types in the data
structure (e.g. integer and floating point numbers,
strings and characters).
Data objects should be accessible using keywords
rather than through variable names or pointers.
The data storage should be efficient, i.e. binary.
The data transfer across heterogeneous networks
should be simplified by the use of the data structure.
The implementation must be portable to a large range
of computers from mainframes to VME systems
(OS9).
It must be easy to use also for inexperienced program-
mers.
It should simplify the archival of data on mass storage
devices.

Based on these requirements a data structure management
system MOPS (Multiple Object Partitioned Structure) has
been designed which introduces concepts and conventions
and provides utilities to express complicated data structures
in a very simple way. All programs which conform to this
standard automatically become modules of a common frame-
work for software in accelerator physics. At CERN MOPS
data structures are used in e.g. optics calculation, orbit cor-
rection, tracking and programs used in accelerator control
systems [3].

BASIC CONCEPTS

The physical storage: The physical location of the data
structure I shall call the “dynamic store” which is a contigu-
ous part of the memory and it can bc allocated either at
compilation time or at execution time if this is permitted by
the operating system. In FORTRAN 77 the dynamic store
may be allocated by defining an array which can be of any
type. A MOPS data structure is mapped onto this dynamic
store. The implementation allows the simultaneous use of
several such data structures stored in different dynamic
stores. from the same program.

The basic unit of the data structure is an entity I shall call an
“object” which contains a number of data elements grouped
together according to logical affinity (e.g. /3 functions) and
stored in contiguous storage words in the dynamic store. A
data element can be a single data item (floating point or in-
teger number etc.), a “C” structure or a collection of data
items like a matrix. In particular, another MOPS data struc-
ture can be stored as an object in a data structure.

The data structure is arranged as a partitioned data set with
a “directory” at the beginning, which may be considered as a
system object, followed by one or more user objects which are
described in the directory. A simple example for such a data
structure is illustrated in Fig. 1.

directory entry 0 (directory)

directory entry user object 1
1

directory entry user object 2 I

USER OBJECT 1

USER OBJECT 2

CH2669-0/89/0000-1713901.0001989 IEEE

© 1989 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1989

The figure shows a data structure with two user objects and a FUNCTIONALITY OF MOPS
directory in front of them. The directory contains all infor-
mation necessary to access the user objects and in this exam- Before I give a short overview how to work with the data
ple the directory has three entries, one for each user object structure I would like to point out what the system provides
and one for the directory itself. The service routines and to the user.
tools provided are used to manipulate and access the differ-
ent data objects and the directory. n All user data is accessible using keywords rather than

variable names.
The directory: In the memory the directory appears as n Data can be entered into a data structure or read back

an array of structures at the beginning of the data structure. from it.
A complete description of the data contained in the structure n Manipulate objects at runtime: objects can be changed
is held in the directory. For every object an entry in this di- in size, they can be dropped from the data structure
rectory is created by the MOPS routines using a specification and new objects can be added at any time. This
provided by the user as parameters to the routines. The in- makes the data organisation dynamic.
formation stored in the directory for one object is: n The data structure can be handled as an entity, e.g.

for input and output on an external medium.
n Data pointer, i.e. offset to the user object in bytes n Attributes of user objects can be made available at

(calculated and filled in by the system). runtime to the user program, e.g. number of data ele-
n Keyword or object name which can be up to 80 char- ments etc.

acters. n Logical relationships can be set up between objects.
n Element type (valid types are all standard FORTRAN n Since the data structure itself contains a complete de-

77 and “C” data types, and more complex data types scription of the data items it allows a transfer accross
such as “structures”). networks.

n Element code (an integer number, derived from ele- n Facilities exist for debugging the data structure and
ment type by the system). the programs.

9 Number of elements for this object (e.g. number of in-
teger variables etc.). MOPS USER INTERFACE

n Size of one element in bytes (e.g. 4 for “INTEGER” or
“REAL*4”). For certain “C” data types this depends MOPS data structures can be accessed from FORTRAN
on the computer. 77 and “C” programs and the corresponding packages of the

n Timestamps for the creation and last write of the data service routines are embedded in these languages, i.e. they are
structure. FORTRAN and “C” callable subroutines and are written

mostly in standard FORTRAN and “C”. Non -standard
features of the languages have been avoided wherever possi-

The directory is normally invisible and not directly accessible ble. In this chapter I shall briefly outline the manner in
to the user and can only be manipulated with MOPS system which MOPS data structures are used. In a few places I
calls. shall illustrate the usage by giving the calling sequence for

FORTRAN 77 as an example.
User objects: All the elements grouped together in one

object must be of the same type, i.e. they must be all integer Memory management: The dynamic store must be pro-
numbers, floating point variables or structures of the same vided by the programmer and it can be defined as a
type. The different user objects can hold data of different FORTRAN or “C” array or it can be allocated with the
types. A special exception is when an object holds another MOPS storage allocator where this is possible [4]. On UNIX
MOPS data structure which itself can contain several objects SYSTEM V operating systems the dynamic store can be a
with different types. The data elements are stored in a way shared memory segment to allow the concurrent access to the
which is independent of the language, for example character data structure from several separate processes. A protection
strings are always stored in the same way, no matter whether scheme with semaphores is used to avoid contention when
the application is written in “C” or FORTRAN 77 and on several processes have to write into the same data structure.
which computer it is run (the representation of strings in The MOPS support routines can handle an arbitrary number
FORTRAN 77 strongly depends on the compiler used). of data structures mapped into different dynamic stores and

the start address of the dynamic store (array name in
Apart from these concepts the way of accessing data via a FORTRAN) is passed as an argument to the routines.
keyword rather than through variable or array names was
one of the basic aims to simplify its use and the portability of Before the data structure can be used it must be initialised.
the data between different high -level languages. In all This sets up the directory structure and reserves the necessary
MOPS routines the objects are referred to with these key- space. The FORTRAN calling sequence looks like:
words. This causes an inevitable (but small) overhead at ex-
ecution time but any program written using this data struc- REAL*4 Q(100000)
tures is easy to understand and to modify without having to CALL SDINI(‘TWlSS’, 25, Q)
care about side effects of the changes and without having to
recompile the entire program or a group of programs. Only The name of the data structure, the maximum number of
when the definition of this object (i.e. the keyword) is user objects and the address of the dynamic store must be
changed a recompilation is necessary. provided as arguments. Time stamps associated with the

creation of the data structure are filled in during this initiali-
sation process.

1714

PAC 1989

After the data structure has been initialised user objects can I/O routines to handle this format make the proper conver-
be booked within the data structure with a call to the appro- sions to and from this exchange format. This has been in-
priate booking routine [4]. The information which must be stalled for the use in the SPS control system and works on all
provided are: UNIX installations which run standard TCPJP.

. Number of data elements.

n Type of the data elements, e.g. CHARACTER,
REAL’8, INTEGER, float etc.

. Keyword or object name for this user object.

The booking routine will reserve the necessary space for the
user object in the data structure, fill the directory entry for
this object and calculate the pointer to the beginning of the
data. For example the call

CALL SDBOOK(216, ‘BETA - HORIZ’, ‘REAL*4’, Q)

would reserve space for an object called ‘BETA - HORIZ’
with 216 floating point numbers. After a user object has
been booked, the objects can be manipulated using the object
name and data can be entered into or read back from the
object using the appropriate MOPS routines.

Input/output of data structures: One of the most impor-
tant features of the MOPS data structure management
system is that utilities are provided to handle the transfer of a
data structure as an entity to and from an external medium
such as a disk or tape. The user does not need to call any
(usually system dependent) I/O statement explicitly. These
utilities maintain the validity and integrity of the data struc-
ture during this transfer. To write the entire data structure
from “Q” into the file “TWISS.DATA” the call

CALL SDFIL(‘TWISS.DATA’, Q)

would be used in FORTRAN 77. A similar call would read
the data structure back into the dynamic store from a file.
The representation of the MOPS data structures on tne ex-
ternal medium is usually sequential and can be either strictly
binary or in a special MOPS ASCII format. Utilities exist
for the transformation between the two formats. In hetero-
geneous networks where computers have different number
representations this ASCII format can be used to transfer an
entire data structure from one computer to another and
therefore allows the exchange of data between a large variety
of computers. Since all type information, i.e. the I/O charac-
teristic, is available in the data structure all data items are
generated in the proper format. For standard FORTRAN
77 or “C” types the IjO characteristic is generated at the time
when the objects are booked. Data types which are not
standard FORTRAN 77 or “C” data types and complicated
user defined types such as “C” structures must be indicated to
the MOPS system by the programmer. This is performed by
a routine which carries out a lexical analysis on a format de-
scriptor, supplied by the user in a fashion similar to [l]. This
allows the definition of complicated structures and types by
the user.

REFERENCES

[I] R. Brun et al; “ZEBRA user guide”,
CERN/‘DD/EE/85 - 06 (1986).

[2] J. Zoll et al; “HYDRA topical manuals” (1981 - 1984).
[3] Many different applications, for example:

W. Herr et al. “A new Closed Orbit Correction
Procedure for the CERN SPS”;
CERNjSPSj88 - 12 (AMS) 1988.

K. Cornelis et al. Multicycling at the CERN SPS -
Supercycle generation and first Experience
with this Mode of Operation”;
CERN/SPS/‘88 - 18 (AMS) 1988.

W. Herr et al. “Application Software for the SPS
Master Timing Generator”;
CERN/SPS/AMS/Note 87 -06 (1987).

[4] W. Herr, “MOPS User Guide for C programs”;
CERNjSPSj88 - 43 (AMS) (1988).

W. Herr and R.Schmidt, “MOPS - Fortran 77 User
Guide”; CERN/SPS/88 -44 (AMS) 1988.

[5] W. Herr and G. Morpurgo, “Binary Transfer of MOPS
Data Structures “; CERN/SPS/ACC/89 - 01 (1989).

For the fast transfer across networks we have developed a
standard exchange format [S] which allows the binary trans-
fer between computers with incompatible architectures. The

1715
PAC 1989

