© 1989 |EEE. Personal use of this material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers
or lists, or to reuse any copyrighted component of this work in other works must be obtained from the |IEEE.

ARCHITECTURE AND PERFORMANCE OF THE NEW CESR CONTROL SYSTEM

C. R. Strohman and S. B. Peck

Cornell University, Lab of Nuclear Studies, Ithaca, NY 14853, USA *

ABSTRACT

The new control system for the Cornell Electron Storage Ring
{CESR) is based on a multi-port memory which can be accessed by many
computers. The computers are either VAXes, which run user programs, or
Xbus Processors, which move data to and from the hardware devices
which are being monitored or controlled. The control system database is
in the multi-port memory, and contains all of the data needed to
communicate with various pieces of hardware.

HARDWARE

The hardware is centered around a multi-port memory system (MPM)
on a VMEbus {fig. 1). Ten processors are connected to the MPM; up to 16
may be connected. Each processor can access the MPM as if it were a
local device. The MPM contains 4 Mbytes of RAM, a semaphore board, a
FIFO board, and a system controller.

User programs run on the VAX computers, which have VAX to MPM
interfaces. Up to 32 processes on each VAX can independently access
the MPM, either reading or writing data in the RAM or sending messages
10 the XBUS Processors through the FIFO board.

The XBUS Processors (XBPs) are VMEbus systems which move
data between the MPM and the hardware which monitors and controls
CESR. Each XBP has 1 Mbyte of local memory, a driver which controls
the XBUS, and a VME to MPM interface. The XBUS is an in-house
developed system of interface cards in crates linked to the computer via
an eight-bit parallel differential bus. Crates are daisy-chained with a
termination on the last crate of each leg of the XBUS.

MPM System Controller Board

The MPM System Controlier resides in slot #1 of the MPM
backplane. It contains a crystal oscillator to generate the 16 MHz VMEbus
system clock (SYSCLK); a one-shot to generate the VMEbus system reset
signal when power is applied or when the manual reset switch is pressed,
and a timer which terminates bus cycles which take more than 1 micro-
second. The cycle is ended by asserting the VMEbus bus error signal.
This relatively short timeout interval prevents the processors connected to
the MPM from having to wait so long that they incur local timeouts when
another processor addresses a non-existent device.

The system controller also contains a bus arbitration circuit
programmed with a round robin select (RRS) algorithm which supports up
1o sixteen bus requests. The arbiter is the only part of the MPM system
which deviates from the VMEbus standard, which only provides for a
4-way RRS. The 16 Bus Request and Bus Grant signals are brought to
the system controller through wires added to the VMEbus P2 backplane.

All of the devices which can be bus masters (devices which initiate
data transfers) are designed such that they own the bus for only one data
operation, either a read or a write. Arbitration occurs in parallel with data
transfers, so that a new bus master may take over the bus as soon as the
current bus master completes its operation.

MPM Memory Board
The MPM memory board contains 4 Mbytes of dynamic RAM with
single bit error correction and multiple bit error detection. it supports 24 or

32 bit addressing and 32 bit data transters.

MPM Semaphore Board

The semaphore board provides an array of test-and-set registers
(semaphores) which can be used to implement mutual exclusion
protection for the MPM memory. There is a semaphore for each longwaord

* Work supported by the US National Science Foundation

CH2669-0/89/0000-1687501.00© 1989 IEEE

(4 bytes) of memory. The address of the semaphore is determined by
adding a constant to the address of the memory location which is being
protected.

Semaphores are used when more than one process needs to write
data to the same place in memory (a critical section). When a process
needs to access a critical section, it first reads the semaphore associated
with that memory location. If the process finds that the semaphore is SET,
this indicates that some other process has already set the semaphore and
that this process should wait. If it finds that the semaphore is CLEAR, this
indicates that no other process is using the memory section. The act of
reading the semaphore causes it to be set. When a process is finished
with the critical section, it clears the semaphore by writing to it. The
semaphores do not actually prevent access to a critical section. Critical
sections must be identified and the programs using these sections must
be written such that they use the semaphores. The need for hardware
semaphores arises because a process can only own the VMEbus for one
operation. If multiple operations were allowed, programs could use a read-
modify-write sequence.

MPM FIFO Board

The FIFO (First In, First Qut) board provides a means for
implementing a message passing system among the processors
connected to the MPM. The FIFO board contains 16 FIFO chips. Each
processor in the system is assigned a specific chip, based on which slot in
the MPM backplane the pracessor’'s interface board is located. Each FIFO
is 9 bits wide and 512 words deep.

The FIFO board is designed so that a processor can write data (9
bits) to any number of FIFOs using only a single instruction. This is done
by encoding the identity of the desired FIFOs in the upper 16 bits of a 32
bit word and placing the data in the lower 9 bits, and then writing the 32 bit
word to the FIFO board. A processor determines if there is any data in its
assigned FIFO by reading a status word from the FIFO board. The status
word consists of the FIFO-NOT-EMPTY bits from each of the 16 FIFOs.
The processor checks the bit corresponding to its assigned FIFO.

VME 10 MPM interface

The VME to MPM interface consists of a master and a slave board
which transfer data between a VMEbus processor and the MPM. The
master board plugs into the XBP backplane; the slave board into the MPM
backplane. The boards are linked by two 50 conductor cables which
provide a 32 bit, imultiplexed, address and data path along with associated
control signals. The boards only allow longword (32 bit) data transters.

The master board maps a range of VMEbus addresses to the stave.
Currently, the range is from 300000 hex to FFFFFF hex, an address
space of 13 Mbytes. When an address within the selected range appears
on the master’s bus, the address is passed to the slave. The slave stores
the address in a latch and sends an acknowledge signal back 1o the
master.

If the XBP is reading data from the MPM, the slave board requests
ownership of the MPM VMEbus as soon as it receives a valid address
from the master. When it is granted ownership, it read data from the
addressed device, stores it in a latch, and releases ownership of the MPM
VMEbus. This makes the MPM bus cycle as short as possible, since the
slave gets the data and then holds it until the master is ready. When the
master receives the address acknowledge, it removes the address from
the cables, reverses the directions of data flow on the cables, and tells the
slave to send the data. The slave places the data on the cabies and
signals the master that the data is valid.

If the XBP is writing data, it sends the data when the address

acknowledge signal arrives. The slave board requests ownership of the
MPM VMEbus as soon as it receives valid data from the master. When it

PAC 1989

— i
197 COLOR DISPLAY !
Z e : CESROO H
L \ o) LINAC XBUS
6 wovTE AAd | V«ETP(ERNET PROCESSOR LINAC XBUS
VME_CPU_BOARD =2
BRAPHICS) 68020 UZO :Hx
VAX TO MPM 1 1 WBYTE AAm
MASTER [UNIBUS) -]—\\ VVE TO wPu
1 MASTER
DISK AND TAPE A MULTI-PORT MEMCRY / v ; €6 o1 = 540 1
: SYSTEM BUs LEG 2 = .00 F1
! (MPM} / (B RIVER |———e0FIB
. : SYSTEM /
CE:RO? H CONTROLLER
sTarion o0 | | ooy / SYNCH XB.5
o v [/ PROCESSOR SYNCH XBUS
9 CAATES
VAX TO MPM ! SEMARHORE gty doan0
MASTER (OBUS| H | WBYTE RAN
F1Fo CRATE
GRAPHICS ! e 1o 1w
YAX TO MPM
o1sK : SLAVE s CRIVER I WEG 41 7 1200 FT
' VAX_TO WM LEQ 52 = 900 FT.
H SLAVE
! VAX TO MEM . _
CESROB ! Stave CESR CENTER XBUS
VA TO MM PROCESSOR CESR CENTER XBUS
vAxscweusw J SLAVE 8 CRATES
Vet WE_CRU_BOARD
DUAL -PORTED DISKS ! SUN/ME TO NPM b el INTERFACE
VAX 10 WM ' SLAVE | WBYTE RAM
MASTER [o8us)] VME TO MPN VHE TO WP
D18 I SLAVE TE! |
LEG 1 = 400 FT.
e e TS s Rnen ozt
: VME_TO WPM
\ SLAVE _
| e CESR ZAST xBUS
CESR33 ! SLAVE PROCESSOR CESR EAST XBUS
[} 16 CRATES
WICRO-VAX I1/RC] VME TO WPM YME CPU BOARD
- SAvE B TE Fau INTERFACE
9 MBYTE RAM } o CRATE
: Yl e
VAX_TO oW | L w LEO »1 = 1500 FY
MASTER {08US) XBUS oRIveR LEG #2 = 300 FT.
DISK AND TAPE :
1
| CESR WEST XxXBUS
: PROCESSOR CESR WEST XBUS
1 WWE_CPU_BOARD |8 CRATES
H 66020 20 Nz
' o
. VIE TO WM
MASTER L
XBUS DRIVER e w LED 1 = 1300 FT,
HARDWARE TEST XBUS
PROCESSOR TEST XBUS
VWE_CPU_BOARD 4 cRATES
\ 69020 20 Wz
T MEYTE RaM
CRATE
____‘ VME TD MO
MASTER
Tous oriven | pe—— e LEG 1 = 300 FT.

Fig 1. CESR contro! system hardware configuration.

is granted ownership, it writes the data to the selected device. It then
releases ownership of the MPM VMEbus and signals the master that the
data transfer is complete.

The RESET signal on the MPM backplane is passes from the slave
to the master, where it connects to the XBP backplane. Therefore, a reset
on the MPM causes a reset on all of the attached XBPs.

VAX to MPM Intertace

The VAX to MPM interface consists of a master and a slave board,
which transfer data between a VAX computer (either Unibus or Qbus
backplane) and the MPM. The master board plugs into the VAX
backplane: the slave board into the MPM backplane. The boards are
linked by a 50 conductor cable which provides a 186 bit, multiplexed,
address and data path along with associated control signals.

The interface is addressed as an /O device, and uses 512
consecutive bytes in the Unibus or Qbus address space. The boards
provide 32 sets of registers, each of which allow the VAX to access the
large address space of the MPM. Each set of registers stores address and
data information for an independent MPM access, so 32 different
processes running on a VAX can use the MPM concurrently. Each set of
registers consists of a status register, an address register, a data register,
and a data register with auto-incrementing of the address register. Each
register has an upper half (the two most significant bytes) and a lower half
(the two least significant bytes). Since the width of the data bus on the
VAX is only 16 bits, and the MPM only supports 32 bit operations, two
VAX operations are required for each MPM data transfer. One of the two
operations actually accesses a device in the MPM; the other operation
accesses data stored on the slave board.

When the VAX staris a transfer, it first places the register number on
the cable. The register number is determined by address bits 9 through 1
on the VAX backpiane. The register number specifies a set of registers in
bits 9 through 4 and a specific register within a set in bits 3 through 1.

When the slave has stored the number, it acknowledges that fact. The
master then either writes data to the slave or reads data from the slave.
The data can be either an MPM address or MPM data. MPM addresses
are read trom or written to address registers on the slave board. MPM
data is read from or written to data registers on the slave board. Access to
centain data registers causes a VMEbus data transfer in the MPM, with the
option of incrementing the contents of the address register.

For example, when the operation initiated by the master is a read
from the upper data register, a 32 bit address (previously stored) is
retrieved from the address register of the specified register set. The slave
board requests ownership of the MPM VMEbus. When it is granted
ownership, the address is placed on the bus and 32 bits of data are read
from the selected MPM device and stored in latches on the slave board.
The slave then releases ownership of the VMEbus. The upper 16 bits are
returned to the master. A subsequent read from the lower data register will
cause the lower 16 bits to be retrieved from the data registers on the slave
and teturned to the master.

CESR CONTROL SYSTEM DATABASE

Initialization

At present, four Mbytes of the MPM memory space are allocated for
the control system database, and slightly less than half of this is in use.
After this memory is initialized by one of the VAX computers, both the
VAXes and the XBPs can read or write in it. The source for the database
is in ten ASCII files, totaling about 15000 lines and 600000 characters.
These describe about 20000 independently selectable elements in about
800 nodes. Each node contains information for 1 to a few hundred control
points or memory elements. There are about 10000 hardware control
points. A typical piece of this file looks like this:

n C'LIN 7BUN PHA' 1 7 40000000 93C7F9CF 800561116 0 22!
¢ omd old val read raw-off-sca write raw-otf-scale

1688

PAC 1989

¢ wr-lowlimm-uplim-mode sts tim dly cmdinc

¢ xberrad rdmap strptr xbus in-out addr xberrtim

f Sif2itei2halé3h

e 5(0)5002.-101023 0101000 1°'BUNCH 1 PHASE ' 0 E1250E
0!

The line starting with 'n’ specifies a node name (LIN 7BUN PHA), bit
masks for bus systems and properties present, and XBP operation codes.
‘¢ lines are comments listing the properties. The *f line is a format
staternent which tells how fo interpret the element initialization, 'e’, lines.
The e’ line for the first element is shown.

The ASCI files is converted into the MPM format in about one
minute. Since programs using the database may not be run during this
time, a syntax checking program was created to check for errors in
database additions or changes. The format types allowed are a variation
on Fortran style, allowing floating, binary, octal, decimal and hexadecimal
numbers, character strings, and repeated combinations of these.
Hexadecimal is the preterred mode for hardware addresses, masks, and
shifts, with decimal and float used for quantitative properties and scale
factors.

Name Table

The central data structure of the MPM database is the ‘'NAME
TABLE'. This is the sole location for all mnemonic node names,
information about how many elements and properties the nodes have,
and pointers to the data stored for each element of these nodes. It also
contains the operation codes which are most often requested of the XBPs
Al present, the nametable entry for one node has 112 words of data: 3 of
these hold the mnemenic name of the node, and 96 are allocated as
pointers to element data. Each element property has a unique location
within the name table for its pointer, even though most nodes use only a
small fraction of the defined properties. Each data structure in the
database has an entry in the name table, including the name table itself.

Lookup of a node mnemonic in the name table is done by hashing
(oy XOR of the 3 words of a name, modulo HASH_TABLE size) to
produce a index in the HASH_TABLE. 90% of the time, this will contain
the name table location of the desired name. If not, the HASH_LINK table
will, at the same index, point o another HASH_TABLE entry. 99% of the
name table entries are found with one such link.

Each of the 96 pointers to element data is either 0 {when the
corresponding property is absent), or the address of a vector in MPM
memory with one 32-bit word for each element in the node. This means
that all data for a single property is contiguous, rather than all properties
for a given element, to optimize vector operations. Element data is stored
stanting from top of available database memory. Additions to the
nametable, hash and other system tables occur from bottom up, leaving
about 2 Megabytes free space

OPERATING SOFTWARE - VAX PROCESSORS

The CESR control system attempts to provide rapid and efficient
translation of user requests into bus-level actions by minimizing the
number of software layers, while enforcing rules in the structure of these
layers to provide reliable operation. The flow of data and control from user
request to hardware makes use of the global, MPM resident, database.

User-level programs call one of about 25 subroutines to read or write
data to the hardware (via the XBPs), or directly in MPM. Naming
conventions are used to make it easier to remember the relevant
subroutine. Some frequently used routines are:

vxgetn('CESR QUAD CUR’,1,98,readout_vec) IXBUS read
vxputn('CESR SEXT CUR’,1,88,command_vec) XBUS Write
vmputn{’'SYN MAILBOX',11,20,DATA) IMPM write
vmgoldn('LIN VERT CUR’,1,12,DATA) IMPM get "OLD"

The subroutine names identify the system (v), select XBP or memory
action (x or m), then direction (put or get) and tinally any special properties
selected. From the fessons of our previous control system, several limits
and standardizations were imposed on such calls. Only a vector form, with
both start and stop indices specified, exists for each action; all numeric
arguments are 4 bytes; the character string used in the call is the same as
seen by users in a directory; and all can be called as subroutines or
functions {with status).

1689

In general, these subroutines do not call any further levels of
subroutines. To handle and make readable the large amount of repeated
code required for MPM access, name conversion, data transfer, XBP wait
foops, and error checking; standardized include files, accessing
standardized variables, perform these actions. In other words, a set of in-
tine, fixed argument procedures, rather than function calls, are used to
extend the Fortran-77 language. To make this aspect, and the whole
system more secure, all variables are explicitly declared: "implicit none" is
required.

A constant part for all these routines is an include file that translates
a name into a nametable pointer using hash lookup, checks the stant and
stop element number against limiting values, defines the offset to first
datum, and gets a mask that tells which XBPs are used, if any. If a
subroutine requires only put/get from the MPM database, (no XBUS
operations), then all that remains is shown below. (i# in column 1 indicates
contents of one include file)
i1 longaddr=ptr_nam+offset_to_property
i1 MPM(base+adrof1)=addr_word1 lload address
i1 MPM(base-+adrof2)=addr_word2 lin 2 X16 bits
i data_word1=MPM(base+datof1) !fetch data
i1 data_word2=MPM(base+datof2) !in 2 X16 bits
i1 longaddr=longdata+ptr_off laddr of data?

c
if(longaddr.lt.db_base) then ltest legality
do i=0,num2-num1 Iclear on err

datavec(i)=0

enddo
status=mpm_ilprop_bot-offset_to_propeny
return Iset error type, then return
endif

c

i2 MPM(base+adrot1)=addr_word1 ‘'load addr
i2 MPM(base+adrof2)=addr_word2 lin 2X 16 bits
do i=0,num2-numi lload loop
i3 data_word1=MPM(base+autinc1)!read 16 bits
i3 data_word2=MPM(base+autinc2)!and incr adr
datavec(i)=longdata luser vector
enddo
status=1
return
lf XBP access is required, a immediate request packet (IRF) is
assembled in the IRP_PACKET table area. The particular IRP used is
allocated at program startup, and is retained throughout execution. An
include file loads bit masks for select, start, done, and error status for all
XBPs involved. The next packet entry is a code specifying an XBP
operation. In some cases it is directly implied by the subroutine, otherwise
it is found in the name table. The remainder of the packet contains the
nametable pointer, and the first and tast elements to use. If the subroutine
has user supplied output data, this is now written into the node command
data vector (not into the packet). Another include file writes a composite of
IRP number and XBP mask to the FIFO board. This aliows XBP operation
to begin. Before starting to wait for completion, any MPM readout can be
done, overlapping xbus processor time. For instance, reading out
command values when both command and readback are requested in
one call.

lsuccess

After writing to the FIFO, the VAX subroutine goes into a busy loop,
reading the packet "DONE" flag. and sleeping when that seems efficient.
When all "DONE" bits are clear, error-checking and recovery are done. if
required, data written into element vectors by the XBPs is moved to the
user's vector, and the subroutine returns. The entire call requires about
500 microseconds for the first datum, and about 25 - 60 microseconds for
each following element, exclusive of efficiencies from multiple processors
acting in parailel.

OPERATING SOFTWARE - XBUS PROCESSORS

The XBPs spend their time either fulfilling a request or waiting for a
new request. When a message appears in an XBP’s FIFO, the XBP reads
the IRP number from the FIFO and calculates the address of the IRP. In
the IRP, it clears its own bit in the START word (using a semaphore if
more than one XBP is involved). The operation code is read from the IRP,
and a specific action routine is called. The routine checks that there are
valid pointers to all required properties. Data is then transferred to or from
the XBUS, with manipulations (shifting, masking, etc.) as appropriate.
After all of the data is moved, the XBP clears its own bit in the STATUS
word of the IRP (if there were no errors) and then clears its bit in the
DONE word.

PAC 1989

