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ABSTRACT 

The new control system for the Cornell Electron Storage Ring 
(CESR) is based on a multi-port memorv which can be accessed by many 
compuiers The computers are either VAXes, which run user programs, or 
Xbus Processors, which move data to and lrom the hardware devices 
which are beinq monitored or controlled The control system database is 
in the multi-port memory, and contains all of the data needed to 
communicate with various pieces of hardware 

HARDWARE 

The hardware is centered around a multi-port memory system (MPM) 
on a VMEbus (fig. 1) Ten processors are connected to the MPM; up to 16 
may be connected. Each processor can access the MPM as if it were a 
local device. The MPM contains 4 Mbytes of RAM, a semaphore board, a 
FIFO board, and a system controller. 

User programs run on the VAX computers, which have VAX lo MPM 
interfaces. Up to 32 processes on each VAX can independently access 
the MPM. either reading or wnting data in the RAM or sending messages 
to the XBUS Processors through the FIFO board. 

The XBLJS Processors (XBPs) are VMEbus systems which move 
data between the MPM and the hardware which monitors and controls 
CESR. Each XBP has 1 Mbyte of local memory, a driver which controls 
the XBUS, and a VME to MPM interface. The XBUS is an in-house 
developed system of interface cards in crates linked to the computer via 
an eight-bit parallel differential bus. Crates are daisy-chained with a 
termination on the last crate of each leg of the XBUS. 

MPM System Controller Board 

The MPM System Controller resides in slot #l of the MPM 
backplane It contains a crystal oscillator to generate the 16 MHz VMEbus 
system clock (SYSCLK); a one-shot to generate the VMEbus system reset 
signal when power IS applied or when the manual reset switch is pressed; 
and a timer which terminates bus cycles which take more than 1 mrcro- 
second. The cycle IS ended by asserting the VMEbus bus error signal. 
This relatively short tlmeout interval prevents the processors connected to 
the MPM from having to wait so long that they incur local timeouts when 
another processor addresses a non-existent device. 

The system controller also contains a bus arbitration circuit 
programmed with a round robin select (RRS) algorithm which supports up 
IO sixteen bus requests. The arbiter is the only part of the MPM system 
which deviates from the VMEbus standard, which only provides for a 
4-way RRS. The 16 Bus Request and Bus Grant signals are brought to 
the system controller through wires added to the VMEbus P2 backplane 

All of the devices which can be bus masters (devices which rnrtiate 
data transfers) are designed such that they own the bus for only one data 
operation, either a read or a write. Arbitration occurs in parallel with data 
transfers, so that a new bus master may take over the bus as soon as the 
current bus master completes its operation. 

MPM Memory Board 

The MPM memory board contains 4 Mbytes of dynamrc RAM wrth 
single bit error correction and multiple bit error detectron. It supports 24 or 
32 bit addressing and 32 bit data transfers. 

MPM Semaphore Board 

The semaphore board provrdes an array of test-and-set registers 
(semaphores) which can be used to implement mutual exclusion 
protection for the MPM memory. There is a semaphore for each longword 
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(4 bytes) of memory. The address of the semaphore IS determined by 
adding a constant to the address of the memory location which is being 
protected. 

Semaphores are used when more than one process needs to write 
data to the same place in memory (a critical section). When a process 
needs to access a critical section, it first reads the semaphore associated 
with that memory location. If the process finds that the semaphore is SET, 
this indicates that some other process has already set the semaphore and 
that this process should wait. If it finds that the semaphore is CLEAR, this 
indicates that no other process is using the memory section. The act of 
reading the semaphore causes it to be set. When a process is finrshed 
with the critical section, it clears the semaphore by writing to It. The 
semaphores do not actually prevent access to a critical section. Cntical 
sections must be identified and the programs using these sections must 
be written such that they use the semaphores. The need for hardware 
semaphores arises because a process can only own the VMEbus for one 
operation. If multiple operations were allowed, programs could use a read- 
modify-write sequence. 

MPM FIFO Board 

The FIFO (First In, First Out) board provides a means for 
implementing a message passrng system among the processors 
connected to the MPM. The FIFO board contains 16 FIFO chips Each 
processor in the system is assigned a specific chip, based on which slot in 
the MPM backplane the processor’s interface board is located. Each FIFO 
is 9 bits wide and 512 words deep 

The FIFO board is designed so that a processor can write data (9 
bits) to any number of FlFOs using only a single instruction. Thus is done 
by encoding the identity of the desired FlFOs in the upper 16 bits of a 32 
bit word and placing the data in the lower 9 bits, and then writing the 32 brt 
word to the FIFO board. A processor determines if there is any data in its 
assigned FIFO by reading a status word from the FIFO board. The status 
word consists of the FIFO-NOT-EMPTY bits from each of the 16 FlFOs 
The processor checks the bit corresponding to its assigned FIFO 

VME to MPM Interface 

The VME to MPM interface consists of a master and a slave board 
which transfer data between a VMEbus processor and the MPM. The 
master board plugs into the XBP backplane; the slave board into the MPM 
backplane. The boards are linked by two 50 conductor cables which 
provide a 32 bit, multiplexed, address and data path along with associated 
control signals. The boards only allow longword (32 bit) data transfers. 

The master board maps a range of VMEbus addresses to the slave 
Currentlv. the ranae is from 300000 hex to FFFFFF hex, an address 
space of 13 Mbytes. When an address within the selected range appears 
on the master’s bus, the address is passed to the slave. The slave stores 
the address in a latch and sends an acknowledge signal back to the 
master. 

If the XBP is reading data from the MPM, the slave board requests 
ownership of the MPM VMEbus as soon as it receives a valid address 
from the master. When it is granted ownership, it read data from the 
addressed device, stores it in a latch, and releases ownership of the MPM 
VMEbus. This makes the MPM bus cycle as short as possible, since the 
slave gets the data and then holds it until the master is ready. When the 
master receives the address acknowledge, it removes the address from 
the cables, reverses the directions of data flow on the cables, and tells the 
slave to send the data. The slave places the data on the cables and 
signals the master that the data is valid. 

If the XBP is writing data, it sends the data when the address 
acknowledge signal arrives. The slave board requests ownership of the 
MPM VMEbus as soon as it receives valid data from the master When It 
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Fig 1. CESR control system hardware configuration 

is granted ownership, it writes the data to the selected device It then 
releases ownership of the MPM VMEbus and signals the master that the 
data transfer is complete. 

The RESET signal on the MPM backplane is passes from the slave 
to the master, where it connects to the XBP backplane. Therefore, a reset 
on the MPM causes a reset on all of the attached XBPs. 

VAX to MPM Interface 

The VAX to MPM interface consists of a master and a slave board, 
which transfer data between a VAX computer (either Unibus or Qbus 
backplane) and the MPM. The master board plugs into the VAX 
backplane: the slave board into the MPM backplane. The boards are 
linked by a 50 conductor cable which provides a 16 bit, multlplexed, 
address and data path along with associated control signals. 

The interface is addressed as an l/O device, and uses 512 
consecutive bytes in the Unibus or Qbus address space. The boards 
provide 32 sets of registers, each of which allow the VAX to access the 
large address space of the MPM. Each set of registers stores address and 
data informatlon for an Independent MPM access, so 32 different 
processes running on a VAX can use the MPM concurrently Each set of 
registers consists of a status register, an address register, a data register, 
and a data register with auto-incrementing of the address register. Each 
register has an upper half (the two most significant bytes) and a lower half 
(the hvo least significant bytes). Since the width of the data bus on the 
VAX is only 16 bits, and the MPM only supports 32 bit operations, two 
VAX operations are required for each MPM data transfer. One of the two 
operations actually accesses a device in the MPM; the other operation 
accesses data stored on the slave board. 

When the VAX stans a transfer, It first places the register number on 
the cable. The register number is determined by address bits 9 through 1 
on the VAX backplane. The register number specifies a set of registers in 
bits 9 tnrougn 4 and a specific regtster wrthfn a set in bits 3 through 1 

When the slave has stored the number, it acknowledges that fact. The 
master then either writes data to the slave or reads data from the slave. 
The data can be either an MPM address or MPM data. MPM addresses 
are read from or written to address registers on the slave board. MPM 
data is read from or written to data registers on the slave board. Access 10 
certain data registers causes a VMEbus data transfer in the MPM, with the 
option of incrementing the contents of the address register. 

For example, when the operation initiated by the master is a read 
from the upper data register, a 32 bit address (previously stored) is 
retrieved from the address register of the specified register set The slave 
board requests ownership of the MPM VMEbus. When it is granted 
ownership, the address is placed on the bus and 32 bits of data are read 
from the selected MPM device and stored in latches on the slave board. 
The slave then releases ownership of the VMEbus. The upper 16 bits are 
returned to the master. A subsequent read from the lower data register WI/I 
cause the lower 16 bits to be retrieved from the data registers on the slave 
andieturned to the master. 

CESR CONTROL SYSTEM DATABASE 

lnitlallzation 

At present, four Mbytes of the MPM memory space are allocated for 
the control system database, and slightly less than half of this is In use 
After lhrs memory is initialized by one of the VAX computers. both the 
VAXes and the XBPs can read or write in It. The source for the database 
is in ten ASCII files, totaling about 15000 lines and 600000 characters. 
These describe about 20000 independently selectable elements in about 
800 nodes. Each node contains information for 1 to a few hundred control 
points or memory elements. There are about 10000 hardware control 
points. A typical piece of this file looks like this, 

n ‘LIN 7BUN PHA’ 1 7 40000000 93C7F9CF 8 0 0 5 6 11 16 0 22 ’ 
c cmd old val read raw-off-sea write raw-off-scale 
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c wr-lowlimm-uplrm-mode sts tim dly cmdinc 
c xberrad rdmap sirptr xbus in-out addr xberrfim 
t 5i f 2i f 61 2h al6 3h 
e 5(0).5002 -101023 01010001’BUNCH1 PHASE’OE1250E 
O! 

The I~ne starting with ‘n’ specifies a node name (LIN 7BUN PHA), brt 
masks for bus systems and properties present, and XBP operation codes. 
‘c’ lines are comments lrstrng the properties. The ‘f’ line is a format 
statement which tells how to interpret the element initialization, ‘e’, lines. 
The ‘e’ lrne for the frrst element is shown 

The ASCII files is converted Into the MPM format in about one 
minute. Since programs using the database may not be run during this 
time, a syntax checking program was created to check for errors in 
database additrons or Changes. The format types allowed are a variation 
on Fortran style, allowing floating, binary octal, decimal and hexadecimal 
numbers, character strings, and repeated combinations of these. 
Hexadecrmal IS the preferred mode for hardware addresses, masks, and 
shifts, wrth decimal and float used for quantitative properties and scale 
factors. 

Name Table 

The central data structure of the MPM database is the ‘NAME 
TABLE’. Thus is the sole location for all mnemonic node names, 
information about how many elements and properties the nodes have, 
and pointers to the data stored for each element of these nodes. It also 
contains the operation codes which are most often requested of the XBPs 
At present, the nametable entry for one node has 112 words of data 3 of 
these hold the mnemorirc name of the node, and 96 are allocated as 
pointers to element data Each element property has a unique location 
within the name table for its pointer, even though most nodes use only a 
small fraction of the defined properties. Each data structure in the 
database has an entry in the name table, including the name table Itself 

Lookup of a node mnemonic in the name table is done by hashing 
(by XOR of the 3 words of a name, modulo HASH-TABLE size) to 
produce a index in the HASH-TABLE. 90% of the time, this will contain 
the name table location of the desrred name. If not, the HASH-LINK table 
will, at the same index, point to another HASH-TABLE entry 99% of the 
name table entrres are found with one such link 

Each of the 96 pointers to element data IS either 0 (when the 
corresponding property is absent), or the address of a vector in MPM 
memory with one 32.bit word for each element in the node. This means 
that all data for a single property is contrguous, rather than all properties 
for a given element, to optrmize vector operations Element data is stored 
starting from top of available database memory. Additions to the 
nametable, hash and other system tables occur from bottom up, leaving 
about 2 Megabytes free space 

OPERATING SOFTWARE VAX PROCESSORS 

The CESR control system attempts to provide rapid and efficient 
translation of user requests into bus-level actions by minimizing the 
number of software layers. while enforcing rules in the structure of these 
layers to provide relrable operation. The flow of data and control from user 
request to hardware makes use of the global, MPM resident, database. 

IJser-level programs call one of about 25 subroutines to read or write 
data to the hardware (via the XBPs), or directly in MPM. Naming 
conventions are used to make it easier to remember the relevant 
subroutine Some frequently used routrnes are 

vxgetn(‘CESR QUAD CUR’,1,98,readouttvec) !XBUS read 
vxputn(‘CESR SEXT CUR’,1,98,command_vec) !XBUS Write 
vmputn(‘SYN MAILBOX’,1 1,20,DATA) !MPM write 
vmgoldn(‘LlN VERT CUR’.l,12,DATA) !MPM get “OLD” 

The subroutine names identify the system (v), select XBP or memory 
actron (x or m), then drrection (put or get) and finally any special properties 
selected. From the lessons of our previous control system, several limits 
and standardizahons were imposed on such calls Only a vector form, with 
both start and stop rndrces specified, exists for each action; all numeric 
arguments are 4 byles; the character strrng used in the call is the same as 
seen by users in a directory; and all can be called as subroutines or 
functtons (wrth status). 

In general, these subroutines do not call any further levels of 
subroutines. To handle and make readable the large amount of repeated 
code required for MPM access, name conversion, data transfer, XBP wart 
loops, and error checking; standardized include files, accessing 
standardized variables, perform these actions. In other words, a set of In- 
line, fixed argument procedures, rather than function calls, are used to 
extend the Fortran- language. To make this aspect, and the whole 
system more secure, all variables are explicitly declared: “implicit none” is 
required. 

A constant part for all these routines is an include file that translates 
a name into a nametable pointer using hash lookup, checks the start and 
stop element number against limiting values, defines the oftset to frrst 
datum, ahd gets a mask that tells which XBPs are used, if any. If a 
subroutine requires only put/get from the MPM database, (no XBUS 
operations), then all that remains is shown below. (i# in column 1 indicates 
contents of one include file) 
il 
il 
il 
il 
il 
ii 
C 

C 
i2 
i2 

i3 
i3 

longaddr=ptr-nam+offset-toproperty 
MPM(base+adrofl)=addr_wordl !load address 
MPM(base+adrot2)=addr_word2 jin 2 Xl6 bits 
data-wordl=MPM(base+datofl) !fetch data 
data_word2=MPM(base+datof2) !in 2 Xl6 bits 
longaddr=longdata+ptr-off !addr of data? 

if(longaddr.It.db-base) then !test legality 
do i=O,num2numl !clear on err 
datavec(i)=O 
enddo 
status=mpm-ilprop-bot-offset-toproperty 
return !set error type, then return 

endif 

MPM(base+adrofl)=addr-word1 !load addr 
MPM(base+adrof2)=addr__word2 !in 2X 16 bits 
do i=O,num2-numl !load loop 
data-wordl=MPM(base+autmcl)!read 16 bits 
data_word2=MPM(base+autinc2)!and incr adr 
datavec(i)=longdata !user vector 

enddo 
status=1 !success 
return 

lf XBP access is required, a immedrate request packet (IRP) is 
assembled in the IRP-PACKET table area. The particular IRP used is 
allocated at program startup, and is retained throughout execution. An 
include file loads bit masks for select, start, done, and error status for all 
XBPs involved. The next packet entry is a code specifying an XBP 
operation. In some cases it is directly implied by the subroutine, otherwse 
it is found in the name table. The remainder of the packet contains the 
nametable pointer, and the frrst and last elements to use. It the subroutme 
has user supplied output data, this is now written into the node command 
data vector (not into the packet). Another include file writes a compostte of 
IRP number and XBP mask to the FIFO board. This allows XBP operation 
to begin. Before starting to wait for completion, any MPM readout can be 
done, overlapping xbus processor time. For instance, reading out 
command values when both command and readback are requested in 
one call. 

After writing to the FIFO, the VAX subroutine goes into a busy loop, 
reading the packet “DONE” flag, and sleeping when that seems efficient. 
When all “DONE” bits are clear, error-checking and recovery are done If 
required, data written into element vectors by the XBPs is moved to the 
user’s vector, and the subroutine returns. The entire call requrres about 
500 microseconds for the first datum, and about 25 60 microseconds for 
each following element, exclusive of efficiencies from multiple processors 
acting in parallel. 

OPERATING SOFTWARE - XBUS PROCESSORS 

The XBPs spend their time either fulfilling a request or waitrng for a 
new request. When a message appears in an XBP’s FIFO, the XBP reads 
the IRP number from the FIFO and calculates the address of the IRP In 
the IRP, it clears its own bit in the START word (usrng a semaphore it 
more than one XBP is involved). The operatron code is read from the IRP 
and a specific action routine is called. The routrne checks that there are 
valid pointers to all required properties. Data is then transferred to or from 
the XBUS, with manipulations (shafting, masking, etc.) as appropnate. 
After all of the data is moved, the XEP clears its own bit in the STATUS 
word of the IRP (if there were no errors) and then clears its bit In the 
DONE word. 
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