© 1989 |EEE. Personal use of this material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers
or lists, or to reuse any copyrighted component of this work in other works must be obtained from the |EEE.

THE RTC - A SOFTWARE SUPPORT SYSTEM FOR THE
CONTROL OF THE CERN SPS

W. Herr, R. Lauckner and G. Morpurgo
SPS Division, CERN, Geneva, Switzerland

Abstract

The RTC (Run Time Coordinator) is a software sup-
port system designed for the SPS control system to pro-
vide a runtime environment for application software.
It coordinates the execution of individual programs or
processes and supervises the process control, i.e. pro-
cess synchronisation, inter process communication. data
transfer and operator I/ 0. This supervision includes the
control of processes distributed on a UNIX based net-
work. A standard language independent data interface
is part of the system. The system includes tools for data
presentation, error logging and contention resolution.
This strategy of separating system dependent features
{rom the body of the application programs leads to high
{lexibility and simplifies the software development.

The basic philosophy of the RTC is discussed and its
implementation is described.

INTRODUCTION

The infrastructure in which software
for the control system of the SPS has to be developed can be
considered as a single computer network. The network is het-
erogeneous @ different types of computers {Apollo Workstations,
IBM PC-ATs, IBM PC-RTs, Norsk-Data ND 100s) running dif-
ferent operating systems (AEGIS-UNIX, XENIX-UNIX, Syntron’
). Some of the computers in the network are also connected to
‘front end processors’, which establish an interface to the hard-
ware controlling the different parts of the SPS.

Programs running on this network can be written in different
languages (typically) Fortran and NODAL?),

What we have to deal with

What we want to do In order to control the accelerator, or parts
of it. people write what we call applications : an application can
be a software program, or a set of programs, normally made of
several parts, running on one or more computers in the network.
We want to run distributed applications on this network and
we also want to be able to run individual parts of an application
independently. We want to be able to run several applications
at the same time. Finally, we want to make life easier for both
the people writing the applications (hiding from them as many
problems as possible which are not directly related with the niain
goal of their application), and the operators, who have to run
the applications (by giving them an uniform way of starting and
controlling the applications).

1Syntron is the operating system running on the SPS Norsk-
Data computers

:NODAL is an interpretative language running on the SPS
Norsk Data computers

THE BASIC PROBLEM

An application, as we sald, can be made of several modules, run-
ning on different computers on the network. In building an ap-
plication, several problems have to be dealt with :
o The overall control of the execution flow and the synchro
nization of the different modules composing the application.
We can isolate several aspects of this problem :

Starting of the different modules

- Sequencing

— Execution of one module conditioned by the status or
the execution result of another one

- Cyclic repetition of a module

~ Inforiing one module that data generated by another
module is ready

e The networking @ how to start the modules on differem
nodes, and how to maintain the control of what is going
on.

The data communication between the different parts of the
application : for example, how to make available to a mod-
nle data generated by another module running on another
computer.

All of these problems, and others we will introduce later, are not
directly related with the main goal of the application itself, which
is to perforn some operation on a part of the accelerator; also,
they are common to a wide range of applications. We could say
that they are system software problems.

THE RTC IDEA

[t shiould not be necessary for the application programmer to have
to deal with system software problems. Mirstly because that is not
his job, and he has to divert part of his precious time from his real
objectives. The other, decper, reason is that if the programs he
writes contain explicit solutions to the system software problems
he meets, these programs will become system dependent.

Consider, for instance, the case in which a part of the applica-
tion (a program) explicitely starts another part (another program)
when a certain condition occurs. In this case, it will no longer be
possible to run these programs individually, to reuse them in other
environments. Also it will be more difficult to modify one part
of the application without creating unforeseen side effects in the
overall execution of the application. Finally, it will be impossi-
ble to modify the overall execution flow without modifying and
recompiling the programs.

I order to overcome all these problems a system has been de-
signed [1],[2] and implemented. This system is called the Run
Time Coordinator (RTC)[5], and it is composed of a dis-
tributed set of supervisor programs, under whose control the ap-
plications will be executed.

Main goals of the RTC are to enable the application program-
mer to

» Split a complex, distributed application into a set of func

tional units.

CH2669-0/89/0000-1678$01.00©1989 IEEE

PAC 1989

o Specily outside the application programs the control flow
and the synchronization between the different modules (func-
tional units) composing the application.

o Also keep outside the programs computer dependent features
{like creation of windows)

o Specify the data flow between different modules outside the
application programs.

As a consequence, the functional units composing an application
can be strongly decoupled, because they do not need to explicitely
refer to each other. ’

From now on, we will call ”task” an application, and ”pro-
cess” any of the functional units composing an application. From
the main goals stated above. it follows that the RTC system

o Must provide the application programmers with an easy way
of specifving the external functionality of the task.

e In particular, there should be the possibility of specifying
synchronization and data communication between different
processes in a task.

o Must be able to execute the task in the way specified by the
application programmer.

FORMALIZATION OF THE IDEAS

In order to let the application programmer specifying the inter-
actions between the different processes of a task, a simple lan-
suage has been defined . This language enables the application
programmer to express in a simple and readable way his require-
ments concerning control flow, data flow , and process synchro-
nization. The application programmer writes a description (the
Task Specification) in which the global properties of the task,
the definition of the processes composing the task, and the control
and data flow of the task are specified using this Task Specifi-
cation Language (TSL){3][5].

The global propertics of a task consist of a name via which
the RTC system will recognize the task, plus some fields defining
the applicability of the task itself. A UNIX file can be specified,
containing environment variables to be passed to all the processes
of the task.

The definition of a process includes fields like the host where
the process has to run, the executable file corresponding to the
process, plis some optional fields, e.g. command line arguments
which have to be passed to the process, the type of interaction the
process will have with the operator, size and position of the pro-
cess window. An important field specifies what data is generated
by the process.

The formalization of the control and data flow of the task,

and of the interaction between processes, are defined by a set of

statements. These statements link the execution of an action

to the oceurrence of an event. or of a Boolean combination of

events,
The RTC language supports the following actions
e execute a process

e signal a process
o kill the task
and the events
e a process terminates or starts
e a process exits with a given exit value
e a process veports a given value to the RTC
e data has been generated

e an accelerator timing event occurs

1679

e a time interval is finished
e a process is not allowed to run

The application programmer can combine these primitives to ex-
press the desired control flow lor his task. Clauses, like repetitions,
preconditions, intervals between the occurrence of an event and the
exceution of the related action add flexibility to the scheme. In
the appendix some examples of possible statements are shown.

The Task Specification is then passed through the Task Spec-
ification Compiler. This operation checks that the syntax of
the TSL was respected, and produces a set of tables. The RTC
will use these tables at run time to perform the execution of the
task in the way specified by the programmer.

From what has been said until now, it is not clear how the pro-

grammmer can specify the data flow : the only two points where
reference to data appears in the Task Specification are the data
generated by a process , in the process block, and the statements
of the form erecute action when data has been generated. The way
RTC supports data communication between different processes is
based on the UNIX interprocess shared memoryfacility. On top of
this UNIX facility, an object-oriented dynamic memory manage-
ment system, called MOPS (Multiple Object Partitioned Struc-
ture) has been implemented and made usable from different lan-
guages. A MOPS [4] is a memory area dynamically partitionable
into objects. Several programs can share the access to a MOPS,
and they can refer by name to the objects it contains. In order to
communicate data between RTC processes, these processes will
create, write and read objects in MOPS. A special Mops Server{6],
with the functionality of transferring MOPS data structures over
the network, even between different types of computers, has been
written.
If the action to be performed as a consequence of a ‘data is writ-
{en” event was the execution of a process, the RTC will assume
that this process needs the data, and it will take care of
making the data available to the process before executing
it. In this way, the programmer is relieved from the problem of
distributing the data over the network.

THE RUN TIME IMPLEMENTATION

The Run Time Coordinator, as stated before, consists of a set of
supervisor programs, under whose control tasks and processes are
executed, Our implementation assigns a well defined function to
cach of these supervisors. We have
e A Scheduler program. The Scheduler is responsible for the
overall control of the task execution. It receives the request
{or activating a certain task, and it performs the actions re-
Jated to the starting of the task. Actions are either performed
directly, or by issuing commands to other supervisors.
In the current implementation, all the events related to the
task (termination of a process, data updating, timeouts, etc.)
are reported to the Scheduler on the computer from which
the task was launched. Fvery time an event is reported to
it, the Scheduler will look into the task tables produced by
the Task Specification Compiler. and will perform any action
related to that event.

» An Executor program. The Executor is responsible for ex-
ecuting the processes belonging to the task. These processes
run as [UNIX children of the Executor. The Executor also
deals with assignment of windows, and input/output redirec-
tion, and with setting the environment and working directory
for the process.

Every time one of its children terminates, the Executor sig-
nals the event to the Scheduler.

The Lxecutor can also receive from the Scheduler the order
to kill all the processes belonging to a given task.

s The Timer. All the operations involving time intervals are

PAC 1989

delegated to the Timer process. This process receives from
the Scheduler the requests for setting up single or repetitive
time intervals and it will teport an event to the Scheduler
every time one of these interval expires,

The exeention of a task with processes running on differcnt
computers requires communication of information over the
networs. For instance. the Scheduler controlling the task has
to inform the Executor on another computer that a process
has to be run, and later on the Fxecutor has to report to the
Scheduler that the process is terminated. Two programs, the
Sender and the Receiver, deal with this problem.

» I'he Sender. The Sender process receives, {rom the other
supervisors on its node, all the messages to supervisors on
other nodes. The Sender transmits the message to the Re-
ceiver on the destination node.

o The Receiver. The Receiver receives messages from Sender
processes on other nodes, and transmits these messages (o
the supervisors to whom the messages are addressed. Tt can
also receive a message requiring the distribution of a MOPS.
In this case the Receiver creates a copy of that MOPS on
the node where 3t runs.

The different supervisors running on the same computer commu-
nicate with cach other via UNIX messages and gueues. Message
exchanee between the Sender on one node and the Receiver on an-
other one makes use of a Remote Procedure Call utility developed
at CIRN and called the Network Compiler{T}.

Our implementation of the RTC is written in the *C7 language
for the UNIX environment. The essenual parts should therefore
he portable to any other computer running the UNIX operating
SVRLeTIL

A user {riendly interface has been also implemented. From
dedicated consoles (Apollo workstations) the SPS operators can
Janneh up to 10 different tasks at the same time, follow their
execntions, and make windows associated with the task processes
visible or invisible. All of this just by using a single mouse button.

CONCLUSION

We have described a software system, the RTC, which offers ad-
vartages both to those writing the software and to those who
run it By using the RTC, application programmers can split
complex distributed applications into small, decoupled functional
units. IMrthermore, he does not have to deal with system depen-
dent problems. The interaction between these units is specified
mea simple language.

The set of functional units constituting an application is then
run under the control of a distributed set of supervisor programs
(the RTCY). Tools are provided to give the operators the possi-
bility of following and also controlling the execution of several
applications at the same time.

By modifving the Task Specification it is casy to change the
wav in which the application is run, and it is straightforward to
adapt i to new external requirements.

References
[1] 1. R. Bvans et al. Software Managers for Mullicyeling

CERN/SPS/AOP/36-10
2] W. Herr. R. J. Lauckner, C. G. Saltmarsh Design Prinei-

ples of the High Level Controls Structure for CERN SPS.

CERN/SPS/S7-40(AMS)

B3] k.). Lauckner The Task

CERN/SPS/AMS/NOTE/ST-5
[4] W. Herr M.OPS. User

CERN/SPS/88-43(AMS)

Specification Compaler

Guide for "C7

Programs.

1680

[5] G. Morpurgo The Run Time Coordinator and Task Specifica-
tion Compiler User Guide CERN/SPS/ACC/89

(6] W. Herr and G.Morpurgo Binary Transfer of MOPS Data
Structurcs CERN/SPS/ACC/89-1

[7] I Kristiansen The Network CompilerUser Guide. Unpub-
lished.

A.1 Direct process—>RTC communication

A task process can commnnicate divectly with the RTC. either
by reporting a status value, or by declaring that a picee of data
has been written. Routines supporting this communication have
been written. These routine are only effective if the process is
actually running under the RTC' control; otherwise they do not
have any eflect. This preserves the possibility of running any
process outside the RTC control.

A.2 Task Specification Language samples

/* An example of a task widely used
by the SPS operators... */
#tdefine YES 4
#tdefine WHISTLE 1€
#tdefine EMPTY -1
#tdefine SHUT_DOWN -1
/% The task block */
task name: coffee_maker

machine types: all

beam types: positron_1, positron_2
permissions: SPS_coordinator, shift_leader
/% followed by process blocks */
prec name: buy_coffee

exec file: /user/coffee/buy

host: Migros

p_permissions: SPS_budget

comlineargs:
int data gen:

Lavazza qualita‘ oro
coffee_powder

inter type: full

window: 0 0 10 186

/% and some possible statements x/

o *

exec light_the_stove /* immediate action */

exec coffee_box_server
repeat make_coffee when drink_coffee finished
repeat signal WHISTLE coffee_man when coffee arrives
repeat drink_coffee pausing 60 secs
when coffee arrives

repeat buy_coffee when coffee_box reports EMPTY
repeat add_sugar when (coffee arrives and

ask_sugar reports YES}

until sugar_btox reports EMPTY
kill coffee_maker when SPS reports SHUT_DOWN

.

hi thie example, “coffeeamaker” is the name of the task.

Jight the_stove”, “coffee box’, “add_sugar’, *buy_coffec’.
sugarcbox’, SPSY ccoffeeanan’ “drink_coffee’ and ~make_coflee
are processes.

colfee’ s data shared by several processes.

PAC 1989

