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Abstract 

Missteering of a particle beam at injection into a circular accelerator 

produces coherent betatron oscillations. The beam position monitor 
system in the Anitproton Source at Fermilab can measure the beam 
position on each turn around the ring during these oscillations. From 
the amplitude and phase of the oscillations, corrections to the beamline 
steering are calculated to remove the oscillations. The analysis includes 
the case where the horizontal and vertical tunes are quite strongly 
coupled. This technique has proved to be valuable both in operatioo 
of the Fermilab Collider and as an analytical tool. 

Introduction 

At the Fermilab Collider one of the steps in preparing for a transfer of 

antiprotons from the Accumulator is to tune the beamline by injecting 
B-GeV protons from the Main Ring backward into the Accumulator’. 
The final step in steering the beam is to minimize the coherent betatron 
oscillations. Without assistance this is often a difficult and tedious 

process. The pressure to do the job quickly is severe, since during this 
time we are neither able to run the collider experiments or to stack 
more antiprotons, yet it must be done well to avoid dilution of the 
antiproton emittance during the transfer. To assist in the tuning WC 
have dcvclopcd a system which automates the process for injection into 
either of the rings of the Fermilab Antiproton Source from any of the 
four beamlines. 

Determining the corrections to the beamline may be broken into 
two major tasks: to measure the injection error with sufficient detail 
to allow correction and to calculate the necessary changes to eliminate 
that error. In the conventional view we need to correct both the po- 
sition and angle at injection, so in principle WE need to measure two 
quantities and adjust two beamline elements (for each plane). 

The injection error could be determined by measuring the beam 
position on the first turn at two locations separated by about 77/2 in 
phase advance. We choose instead to measure the beam position at a 

single location on many successive turns. Making adjustments based 
on the oscillations has the advantage of letting us work on exactly the 
property that we are trying to minimize. Using multiple turns allows us 
to improve the precision of the measurement by, effectively, averaging 
over many measurements to obtain two parameters. Further, by using 
a single detector, we remove ail questions of cross-calibration between 
two detectors. 

We describe the oscillations we are trying to correct with two pararn- 
eters, the phase and amplitude. From these numbers and the lattice 

we calculate t!ie changes to two bending elements which will eliminate 
the oscillations. 

Theory 

K’e consider the two-dimensional space of all siniple injection oscil- 
lations in one plane. The ideal is a point with zero amplitude. Any 
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finite amplitude oscillation will have a phase. The amplitude and phase 
characterize the oscillation. 

If we start with no oscillation and turn on a single trim in the injer- 

tion beam line, we induce an oscillation. The phase of the oscillation 
depends only on the phase advance from the trim to the measurement 
position. The amplitude of the oscillation depends on the size of the 
bend in the trim and the relative lattice functions at the two points. 
A, single bipolar trim can move the oscillation vector from the cew 
ter in either direction along a straight line. A second trim, placed at 
some other phase (moduio r) relative to the detector, will produce 
oscillations that lie along a straight line at a different angle. 

Figure 1: The oscillation vector moves along two different straight lines 
as two different trim magnets are varied. 

Now we adjust two trims. Assuming a linear machine, the position of 
the beam at the detector on each torn is the linear sum of the changes 
induced by each of our two trims. We can find the resultant oscillation 
on our plot by taking the vector sum of the two separate oscillations. 

The summi ng process can be reversed. An arbitrary oscillation vet. 
tar can be decomposed into the linear sum of two vectors, with the two 
vectors parallel to the axes defined by the two trims of interest. If we 
start with the beam oscillating, we can calculate the magnitude of the 

correction necessary from each trim in order to produce an oscillation 
with will exactly cancel the initial oscillation in the ring. 

This graphic picture of the trimming explains well what can also be 
understood in other ways. The most important thing to notice is the 
problem you face if the two trims you are attempting to use are close 
together in phase and the error oscillation you want to correct is far 
away from them in phase. Although you can decompose the error into 
components parallel to the trims, you are likely to run out of range 
on your power supplies before attaining the desired correction and you 
may not have enough aperture in the beam line between the two trims 
to accommodate the deviations. 

We can also understand better the traditional tuning process. Given 
two knobs associated with two trims we traditionally use them alter- 
nately to minimize the amplitude of the oscillations, iterating until we 
are satisfied or bored or tired. If the trims are orthogonal, the ideal, 
we follow the first path. First we optimize with one trim, then the 
other, and we are done. It takes a while to fmd the minimum oscilla- 
tion amplitude as a function of each trim, requiring measurements at 

many points along the line. This is especially true of the first trim, 
since it is likely to have a fairly shallow minimum. If the two trims 
are not orthogonal, an iterative process must be used, only slowly 
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converging. The paramount importance of establishing trims, or com- 
binations of trims, that are orthogonal is thus vividly demonstrated. 
By contrast, thr decomposition of a single measurement can predict 

the correct settings when the available two-dimensional information is 
used. Additionally, the placement of trims is less critical. 

Measurement of Oscillations -_--__.-- 

The hardware of the Beam Position Monitor (BPM) system for the 

Antiproton Source has been described in detail elsewhere’. For this 
measurement we use the section of the electronics which detects the 
53 MHz component of the beam (due to the RF buckets) and which is 
capable of logging the beam position at one detector on each turn of the 

beam around the ring. This is commor~l,y known as the turn-by-turn 
(TBT) system. 

The goal of the data analysis is to extract an amplitude and phase 
for the oscillations. A necessary byproduct is the frequency, which also 
gives the tune of the machine. 

A Fast Fourier TransfoE .__.- ~I_____ 

The first stage of the analysis is a Fast Fourier Transform (FFT) of 
the position data. The code derives from that given in Reference 3. 
A simple peak search for the maximum amplitude gives the fractional 

part of the tune, q, to within l/N where N is the number of turns. A 
simultaneous search for the second-highest local maximum attempts 

to find the frequency of oscillations coupling in from the other plane. 
At least some of the additional information that we extract using the 
techniques described below could probably be obtained by a more so- 
phisticated application of FFT th eory, but we chose to use the tools 
with which we were familiar. 

Fitting Uncoupled Oscillations - ..__ 

We can fit the simple oscillations to a sine wave using a least squares 
fit. For a given fixed frequency the problem is a linear least squares fit. 
We find the best frequency by solving the problem for a few different 
frequencies near the frequency determined by the FFT. 

We take i to be the turn number, ranging from 0 to iV - 1; X, 

to be the measured position on turn i; and z(i) to be the position 
calculated from a pure sine wave. We assume that all positions are 
measured equally well, since the detector and electronics arc identical 
for all measurements. The quantity to be minimized is then 

N-l 

D2 = c (S; - z(i))’ (1) 
i:o 

and the best fit is obtained when all the partial derivatives of 11’ with 
respect to each parameter of z(i) are equal to zero. 

If we use the functional form 

z(i) = Cl sin Zxqi t Cz cos2nqi (2) 

and keep Q fixed, then we can quickly take the partial derivatives of 
Dz with respect to the parameters Cl and Cz, equate the derivatives 
to zero, and solve the two linear equations for the two unknown pa- 
rameters. We also calculate Dz for those values of C, and C1. 

For a givrn measurement data set the quantity II2 is only a function 
of q. We calculate Dz for p = q~.v~, the tune obtained from the FFT; 
for Q = QFFT - l/N; and for Q = Q~FT + l/N. I/N is the granularity 
of the measurement of Q,CF~ and is thus an appropriate range. We 
assume that the dependence of Dz on q is approximately 

D2(q) = DZ(PO) t p%“)(q - P$ (3) 

for small variations of q from po, the ‘best’ value. Having evaluated Dz 
for three values of Q, we may solve for 9,~ (and, if we wanted to, Dz(qo) 

and D”‘(qO)). Using our new value ~0, we solve one last time for Cl 
and Cz. To convert C1 and C1 into the amplitude and phase that we 

desire, we equate the two expressions 

z(i) = (7, sin Zaqi -6 Cz cos 2nqi 

= Amplitude sin (2aqi I- phase) 

and require them to be equal for all values of i. 

(4) 

(5) 

Fitting Coupled Oscillations 

The previous analysis assumes that the effect of coupling between the 
horizontal and vertical tunes may be neglected. In the Accumulator, 
where we run very close to the qr = qv line and with the tunes coupled 
quite strongly on the injection/extraction orbit, this is not a reasonable 
approximation. The Debuncher, as well, suffers from coupling in some 
modes of operation. We are therefore led to a more complete analysis 

which includes the effects of coupling. 
The basic principle remains the same as with the uncoupled case. 

We treat the two planes separately. The peak search of the amplitude 
spectrum from the FFT finds the two highest local maxima. A linear 

least-squares fit to two sines waves is performed using the two frequen- 
cies obtained from Ihe FFT. The frequencies may be refined by seeking 
better fits to the data with different frequencies. 

We write 

z(z) = Al sm Pnqli t B1 cos 2rqli + A? sin Zxqli - Bz cos 2nqli (6) 

for the oscillations. The partial derivatives of D* are set to zero to 
produce four linear equations in four unknowns. The two amplitudes 
and phases are calculated as they were for the uncoupled case. 
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Fig::e 2: The sum of two sinewaves is fit to the strongly coupled 
oscillations. The heavy dots are measured points on successive turns; 
the light line is the At to the data. 

The frequencies determined from the FFT are generally sticiently 
precise to allow us to use the amplitude and phase from the linear 
tits obtained with the FFT frequencies. To improve the frequency 
(tune) values beyond the precision offered by the FFT, we need to 
do a two-dimensional non-linear fit. The FFT values provide a good 
starting point for the frequency fit. \Ve have adapted the subroutine 
MIGRAD, a variable metric gradient method from the CERN fitting 
package MINUIT* for the ft. 

Calculation of Corrections -__- 

\Ve use, of course, the standard Courant-Snyder notation of beta 
functions and phase advances to describe the motion of the beam in 
the rings. This notation may be extended to a beamline which joins a 
ring by propagating the parameters in the ring through the magnetic 

elements up (or down) the beamline. In this notation a bend 60 in the 
beam line at a point A will propagate down the line and around the 
ring to point E as a change in the displacement. 

62, = 6@Ad%%sjn(1C’z - $A) (7) 
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The oscillation at one measurement point on successive turns is then 

z; = 68,tmsin(tiz t 2rQi - $A) (8) 
= A sin Z*qi + 4 

Canceling oscillations with two trims 

(9) 

So, starting from perfect injection, each trim will induce an oscilla- 
tion of fwed phase and varying amplitude in the ring as its setting is 
changed. To correct for an existing oscillation we need only decom- 
pose the error oscillation vector into its components parallel to two 
trim oscillation vectors and set the trims to cancel. 

\V:e call the trims A and I3. We call the oscillation vectors O+*, O-B, 
and O&,, . The condition for cancelling the error oscillations is then 
simply written. 

o’a T 0-B t o.& = 6 (10) 

To actually calculate we separately set two orthogonal components of 
the vectors. 

0 = d Sin ($uphf ~ $A) + H Sin ($~p,+f $0) t c Sin $ (1 1) 

0 = Acos($npnr-$‘a)$ Bcos(~w~,-is)+Ccosti (12) 

These are easily solved for the trim strengths A and B and simplified 
by combining products of sines and cosines. 

A = -Csin(Qf3Pbf - vfl - fP) 
sin (tiS - +A) 

B = c sin (@BP&f - $A - 4). 

Sin(4’B - $A) 

Implementation 

The data acquisition and data reduction has been described above. 
The PDP-11 “console” which the accelerator operator uses offers a 
color text screen with a keyboard and track-ball for most user inter- 

action. A color graphics screen is in the adjacent rack. Our system 
consists of two programs communicating with each other using RSX- 

11M system utilities. One program is responsible for data acquisition, 
fitting the oscillations, and display of the data and fits. The other 
program handles operator interaction (including control of the former 
program), monitors the status of the trim elements, and calculates 
and sends new settings to the trim elements based on the measured 
oscillations. 

The system has been in active use since the start of the 1988.1989 
Collider run at Fermilab in June of 1988. The operators find that 
tuning to remove the injection oscillations now takes only a few minutes 
whereas in the 1987 Collider run the process often took an hour. At 
the same time the oscillations are also reduced to a level that was only 

dreamed of in 1987. 
We have found that calculations of corrections based entirely on 

calculated lattice parameters and trim magnet strength measurements 
are not perfect. The relative phases and amplitudes, especially in the 
beam-line, can be improved significanty by measuring the oscillations 
as a function of trim setting. The source of the errors has not yet been 
isolated. (13) 

Conclush 
Remembering that the position oscillations are proportional to the in- 
variant oscillation size and fl and the effect of a trim is also propor- 
tional to ,/a, we can substitute back to get trim bends as a function 
of oscillation amplitude. 

68,, = 
Amplitude sin ($gp,w - $0 - @) 

v?JGGz sin ($0 iA) 
(15) 

El?B = 
Amplitude sin ($BPM - $A - @ 

flEX sin (ti’B - $A) 
(16) 

We note that these equations confirm several intuitive notions: 1) A 
trim located at a high 0 location does not need to be run as hard as 
one at low beta. 2) We achieve better precision (for a fixed position 
resolution) by using a BPM at high 4. 3a) Trims that are orthogonal 
to each other in phase advance (modulo r) work best, because they 
minimize the bends needed from the trims. 3b) Trims that are near to 

each other in phase advance (module r) require more strength. 4) If 
the phase error matches the location of one trim, then the other trim 
is not needed. 

Reducing oscillations with one trim 

The technique of the previous section may also be applied to the 
problem of minimizing oscillations when only one trim is available. 
The the residual oscillation may be written as the sum of the initial 
oscillation plus the trim oscillation. 

Restiual = O’a + Oe;,,,r (‘7) 

We take the square of the amplitude of the residual, in the invariant 
units of the previous section; differentiate with respect to the trim 
amplitude A; set the derivative equal to zero to fund the minimum 
residual; and solve for .4. 

R2 = AZ f C* + 2AC cos (+gp~ - $A - 4) (181 
aR2 
-= 
8A 

2A t 2C cos (@~pfif - $A - $b) = 0 (19) 

A = -C COS (&~p&f - $A - (b) (20) 
We then slip in our Jp’s to return to units of trim bends and BPM 
positions. 

Treating oscillaGons as vectors to be summed or decomposed is a 
powerful and effective technique for correcting unwanted coherent ix)- 
jcction oscillations. Unstable elements can be identitified by looking 
at the phase of pulse-to-pulse variations. This measurement technique 
could be exploited to measure lattice parameters along a beam line 
and around a ring. Simultaneous treatment of both planes in the anal- 
ysis of coupled oscillations would allow measurement of the coupling 
strength and phase quickly. We should be able then identify trou- 
ble spots and analytically calculate settings for the skew quadrupole 
correction elements. 
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