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Abstract 

Progress is reported on replacing a heterogeneous triplex of 
outdated control systems with a single system. Prominent use of 
hardware and software standards is made to allow for an 
incremental upgrade, for best use of rapidly changing technology, 
for off-the-shelf computer and I/O hardware, and for several 
commercial software packages. A non-hierarchical architecture 
with a distributed run-time database is employed. 

Introduction 

As the Bevalac enters its 35* year of operation, we are 
designing and implementing a third generation of the computer 
control system. In this paper, we discuss the goals and require- 
ments of the new system, outline the implementation techniques 
being used, and then summarize progress to date. 

Bevalac control systems have remained operational for about 
12- 15 years after their initial design-a span of several computer 
“generations,” Early in their life-cycles, effort was concentrated 
on the basics: systems, networks, and graphics. The middle phases 
saw the peak of productivity from the perspective of high-level 
applications: closing loops, modelling, and data management. And 
the end portion was beset with increasing hardware reliability 
problems and low productivity for new applications as the systems 
reached saturation. Each new system demanded new hardware, 
engineering, software, and retraining for the operators. Although 
hardware costs dominated for the first half of the life-cycle, in the 
end software costs were larger. Studies for this[l] and other[2] 
future controls systems bear this out to an even greater extent. 

Operations at present are directed from four different control 
rooms, representing about 8 operator stations, with about l/3 of the 
seltnble/readable parameters (of a total of about 3000 to SOOO) not 
interfaced to any computer system. The remaining 2/3 are roughly 
equally divided among three unconnected systems. Two of 
these131 are 13 years old, based on 16-bit minicomputers; the 
third[4] uses X- and 16-bit microprocessors and is 9 years old. All 
three use different interface technology and two varieties of pro- 
prietary networking. In combination they process about 100,000 
asynchronous events unevenly distributed over a 4-6 second major 
machine cycle. 

Goals and Requirements 

Because the future growth rate of the Bevalac is not accurately 
known, the new control system must show a much more seamless 
behavior as new hardware technology is phased in almost con- 
tinuously, but in unpredictable chunks. At all times, the bulk of the 
effort should be directed towards the high-level applicatioqs, for 
which the demand will actually increase with time. The program- 
ming staff size and costs must remain constrained. It is also be- 
coming clear that new productivity tools (for program design- 
“CASE”, graphics presentation, networking, and so forth) typically 
have voracious appetites for computer power-another incentive to 
plan for hardware turnover, and to use extra hardware to minimize 
*This work was supported by the LS DOE under Conlract No. DE- 
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software costs over the life-cycle. 

Although the existing control rooms and their equipment must 
still be capable of independent operation, now any one control 
room must be able to operate the entire facility. Start-up, shut- 
down, and switch-over must be very rapid, requiring more 
“smarts” from the control system (including sequencing, fault 
analysis, and auto-tuning). Where manual operations are desired, 
presentations must be of the highest quality. Operators will have to 
accept new assignments readily, therefore the control consoles 
must present a uniform, intuitive “look and feel” (see [5] for a 
thorough discussion). Diagnostics must be available during 
normal operations, for the components of the system itself, as 
well as for the accelerator devices. 

The old systems must lx incrementally replaced as funding 
allows, and all remaining parameters brought under computer con- 
trol. The many proprietary and disparate development environ- 
ments need to be discarded, and a single, new one chosen that is 
likely to allow easy interchange of engineers and programmers 
among other LBL projects and that is not locked to specific ven- 
dors or instructions sets. Maximal use should be made of formal 
and industry standards and market-driven products (see [6] for an 
overview). Because the cost of hardware continues to decrease, it 
is better to defer as much as possible to future purchases-a 
strategy that is effective only if software and hardware standards 
are chosen carefully for their longevity and widespread acceptance. 

Architecture 

The layered architecture is shown in Figure 1. The “front-end” 
is externally synchronized to machine interrupts down lo the finest 
level required, and performs all interfacing, scaling, smoothing and 
time-critical operations. The “high-level” deals with display 
formatting, archiving of data sets, sequencing, and global fault 
analysis on a much slower time scale. These two layers are 
connected through the “datapool.” 

Operator 

Figure 1: Layered Architecture. Results flow upward from the 
machine to the operator and commands flow downward. 

In this “flat” architecture the two layers are placed in different 
subsystems. These are highly replicated and connected by a single 
logical network, as shown in Figure 2. The datapool is distributed 
within the front-end. Each “area” behaves like an independent 
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subsystem, yet there is full, direct connectivity between areas. 
Analysis[ 1][2] shows that most data transmission will occur within 
areas, which are naturally occurring centers of activity, such as a 
control room and its associated accelerator. 

Area Area 

Figure 2: Logical Network. High-level and front-end components 
are directly connected. Most traffic stays within an area. The data 
resides in the front-end. 

The flow of data is presented in Figure 3. Each high-level task 
is driven by a “device list.” It queries a “locator” task to determine 
the distribution of the needed data, then exchanges that data 
directly with one or more responding tasks in the front-end. 
Similarly, front-end tasks are coofigured from a 
so inform the locator of the devices they control. 

“control list” and 

device list 

control list 

Figure 3: Dataflow among Tasks. High-level and Front-end tasks 
are list driven. They use the Locator task to learn each other’s 
“address,” then exchange data directly. 

Data exchange can consist of a single transaction, much like a 
function returning a result. Or it can be a two step process: first, a 
request for the data is made; then, based on a time period or a 
machine “cycle,” the response is returned in a “call-back.” The 
second step is repeated continuously on behalf of long-lived tasks 
such as operator displays. The call-back may be further restricted 
to only changed data. Together, these techniques have the 
properties of minimal data movement, of ensuring that data is 
always fresh, and of guaranteeing that “chunks” of data come from 
the same cycle. 

The device list can be built in to the task, it can be read from a 
disk file, or it may be synthesized by a generic screen manager as 
an operator configures his display station (discussed below). The 
underlying data moving mechanism must support the need for 
requesting and responding tasks to dynamically alter their 

connections for any of several causes: change of device list by 
requester, change of control list by responder, inactive requester, or 
inactive responder. 

Implementation 

The network is built from Ethernet coaxial and fiber-optic 
segments connected with repeaters. Bridges will be added if area 
traffic isolation is needed to increase the effective bandwidth. 
Loose coupling via gateways will be used to reach experimental 
and administrative areas. Major increases in performance can be 
straight-forwardly accommodated by using a high-speed backbone 
such as the emerging FDDI standard. 

The high-level console computers are general purpose, high- 
resolution, color engineering workstations. Each is self-contained, 
having enough cpu power, ram, graphics hardware, and disk 
storage to present all needed programs, screen displays and so 
forth. They rely on the network only for data exchange, for 
accessing a central archive, and for occasional software updates. 
They utilize the UnixrM operating system, the TCP/IP network 
protocol, and (soon) the X-Windows graphics protocol. As the 
need for more consoles grows, more workstations will be 
purchased. Performance increases will be accommodated with 
upgrades and replacements--compatibility is required only at the 
level of the standards just mentioned. 

Other high-level functions such as automatic sequencing and 
fault analysis can be placed on computers more specialized for 
compute-bound applications. On the other hand, a model, which is 
essentially a mathematical entity with inputs and outputs, logically 
belongs at the front-end. It might be implemented, however, on 
similar hardware (again, see[5]). 

The front-end is built from VME crates. Within each crate, one 
“primary” computer is dedicated to managing the datapool. This is 
typically a single board that also contains the Ethernet interface, so 
it does not load the backplane. The actual real-time activities take 
place on “secondary” computers that are closely coupled with off- 
the-shelf I/O boards or entire commercial I/O subsystems, or 
sometimes configured with on-board I/O circuitry. At present, we 
are designing only one type of custom I/O board, to interface with 
the older systems that have no Ethernet capability. (This approach 
“hides” the older systems in the new front-end.) Interfaces also 
exist from VME to older systems such as CAMAC. 

All VME computer boards contain sufficient local memory to 
hold their programs and local data. They will use a simple kernel, 
and most will support a real-time operating system with TCP/IP 
(required on the primary). The backplane can be used as either a 
fast LAN or for direct memory coupling. Groups of boards that 
support the VSB standard can form tightly-coupled subsystems 
with little VME load. Expansion will be accommodated with 
faster boards, by using more boards and/or crates, by direct 
coupling of VME crates, and eventually by moving to FutureBus 
(which offers a planned compatibility path). 

Both high-level applications code and real-time code are 
developed identically in Unix using the “C” language (with 
migration to C++ anticipated). VME tasks are downloaded and 
debugged using VxWorks7M, a commercial product that supports 
TCP/IP networking for both development and run-time activities. 

Applications programs use the Remote Procedure Call (RPC) 
for task to task communications. We have taken the lowest level 
of this public-domain[7] protocol (available on most systems 
supporting TCP/IP) and added some functionality that reduces the 
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programming effort for typical accelerator applications. We use 
the UDP transport mechanism since this simple datagram facility 
closely models the type of transaction we want. RPC directly 
supports the dynamic mechanisms required for all configuration 
situations described in the Requirements section. Because RPC 
contains an efficient@] data-translation facility called the External 
Data Representation (XDR)[9], different cpu instruction-set 
architectures can be used either for consoles or VME boards. This 
is particularly attractive in light of the high-performance RISC 
computers now beginning to become available. 

We use a graphics-based, “windows, icons, menus, pointer” 
(“WIMP”) human interface. Everything from mimic diagrams, to 
trend logs, to simulated meters can be flexibly accommodated. 
Input from the operator takes place using simulated buttons, 
sliders, “pick” lists, check-boxes, and other now familiar user- 
interface techniques from the world of personal computers and 
engineering workstations. (Some conventional knobs will remain 
in use.) However, all of the “gimmicks” of managing multiple 
windows, decoding the screens, and so forth are handled by a 
single, generic task, “Picture,” that is paired with every “real” 
application, greatly reducing the complexity of the latter programs 
since they have no graphic programming content. 

In Figure 4 , the Picture task loads and presents screens. In 
response to operator activity, it decodes the screen objects and 
prepares a dynamic device list which it sends to the Application. 
The latter obtains “raw” response values for the devices (from the 
front-end), synthesizes the requested attributes as required, and 
passes them back to Picture. Picture updates the screen objects as 
needed. Command values are handled similarly in the opposite 
direction. 

(to graphics system) References 

screens (to front-end) 

Figure 4: Separation of Graphics Component. Picture manages 
screens and their input and output objects. The Application task 
collects and disburses data from and to the Front-end. Only 
required data is exchanged between tasks. 

We use a commercial package called DataViewsm to both 
prepare screens and animate them. The preparation phase proceeds 
much like any desktop presentation would-operators and other 
accelerator personnel build and modify the “control panel” screens 
over the life of the facility. These screens specify the device name 
or names to be associated with every input and output object and 
become the “lists” that drive the console applications-which are 
reduced to a few generic programs. 

The DataViews package provides a dynamic referencing 
feature, so that common objects with many instances are updated 
by changing only the master template. This aids uniformity of 
detail across applications and eliminates redundant effort. The 
package provides very high-level runtime functions for screen and 
object management, as well as the low-level routines found in all 
traditional graphics packages-and like them, DataViews insulates 
us from all details of the underlying graphics of the workstation. 

Thus, although the present complement of consoles consists of Sun 
3/60’s with SunViewm and no hardware graphics, we expect to 
make no changes when we upgrade to X-windows and when newer 
workstations are purchased with different graphics hardware. 

Status of Project 

We have in place 7 console workstations, and 3 VME crates. 
Two of the three older control systems are connected to the new 
network with high-speed links from VME crates. The third crate is 
being outfitted to control a few hundred new parameters. 

The new console software is in use for large survey displays, 
trend spotting, and bulk operations such as major start-up and shut- 
down, and about 10% of the display workload has been moved. 
Prototyping is underway for more input-intensive disciplines such 
as the tuning of small sections of beamline. We expect to complete 
prototyping in mid-1989. A small and growing operations crew is 
maintaining the screen repertoire. 

The first generation of production software is in place to 
support the basic features of the distributed database. It is expected 
that refinements will be complete by late-1989. 

Plans call for 15 consoles on-line by mid-1990, with all high- 
level software moved from the two oldest systems, and six VME 
crates in service: three linked to the three older systems, and three 
with new devices. Funding levels will then determine how rapidly 
the remaining moves to the new system can take place, in this 
order: high-level functions from the third of the older systems; 
front-end applications from the first two older systems; front-end 
applications from the third older system. About half of the present 
effort goes into maintenance of the older systems. 

[l] Bevalac Upgrade Conceptual Design Report, LBL-5 183Rev. 
128 (1987). 

[2] W.K. Dawson, et al., Conceptual Design for the TRIUMF Kaon 
Facrory Control System, TRI-87- 1 (1987). 

[3] R.A. Belshe, V. P. Elischer, V. Jacobsen, “The Feasibility and 
Advantages of Commercial Process I/O Systems for Accelerator 
Control,“IEEE Trans. Nucl. Sci., NS-22, 1036 (1975). 

141 S. Magyary, et al., “A High Performance/Low Cost Accelerator 
Control System,” IEEE Trans. Nucl. Ski., NS-28, 1461 (1981). 

[S] V. Paxson, V. Jacobsen, E, Theil, “A Scientific Workstation 
Operator-Interface for Accelerator Control,” Proc. 1987 IEEE 
Accel Conf., Wash, DC, 556 (1987). 

[6] E. Theil, V. Jacobsen, V. Paxson, “The Impact of New 
Computer Technology on Accelerator Control,” Proc. I987 
IEEE Accel . Conf., Wash, DC, 529 (1987). 

[7] Remote Procedure Call Programming Guide, Sun Micro- 
systems, Inc (1986). 

[8] M. Rosenblum, “The Performance of Sun’s Remote Procedure 
Call,” private communication. 

[9] External Data Representation Protocol Specification, Sun 
Microsystems, Inc (1986). 

PAC 1989


