© 1989 |EEE. Personal use of this material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers
or lists, or to reuse any copyrighted component of this work in other works must be obtained from the | EEE.

Applications of Modern Filtering to Accelerators

Shou-Yuan Zhang

AGS Department
Brookhaven National Laboratory
Upton, NY 11973

Abstract

In this paper we present the modern filtering formulation, the
system modeling, and the applications of the modern filtering to
the Accelerator technologies.

I. Introduction

The conventional filtering approaches (including the digital
filter) postulate that the useful signals lie in a frequency band,
while the noises lie in another. The modern filtering approaches
however identily the signals {from their statistical properties, and
can be applied in the following categories: real time filtering, for
control; smoothing, for analysis; and prediction, for control with
delay factors. The data acquisition, computer calculation, system
modeling, and noise statistics identification are required in the
implementation of a modern filtering. For the detailed treatment
of the modern filtering and its properties, readers are referred to
[1]. For the various applications, readers are referred to [2].

In this paper, we shall present the modern filtering applica-
tions in the Accelerator technologies. To make the paper self-
contained we shall go through every step for the design of a
modern filtering from the filtering formulation, system modeling,
to the application. In Section II, we present the modern filtering
formulation for the simplest case of the single-variable filtering
with a first order system. In Section III, we show the system
modeling for the AGS Slow Extracted Beam (SEB) system. In Sec-
tion IV, we show the SEB filtering. The last section is devoted for
the discussion of other applications.

II. Modern Filtering

1. System Model

Consider a dynamic system represented in a state space form,

% = Azr + Bu (1a)
y =Cr + Du (1b)

where u is the system input, y is the output, and z is the state.
We consider in this paper only the single-variable system, ie. u
and y are scalars. The dimension of the state depends however on
the system order and therefore z is in general a vector. Thus, A4,
B and C are the matrices with admissible dimensions.

Let the system be sampled uniformly at the sampling time 7.
It is known that without the effect of an input the state at the
step k-+1 can be determined from the state at k,

Zep1 = $2, 2)

where & is an integer, ¢ is called the transition matrix that can be
calculated from the system state matrix 4 in (1)

»

¢ — eAr (3)
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2. Signal Model

With the transition matrix, the signal affected by both the
system input noise w, and the measurement noise v, can be
described by

Ty = G + Quy (4a)
y = Cr, + 1y (4b)

where @ is the coupling matrix from the noise w; to the state.
The statistics of the two noise models is described as follows. Both
models are assumed to be the Gaussian white random precesses
with zero means, le.

E{w} = E{v} =0 (5)

Here for simplicity we also assume that w; is scalar. The two
precesses are independent with each other. Their covariances, i.e.
the quadratic mean deviations are written as

Eluwft =0} (6)
E{vf} =o! (7)

They are not necessarily the same.

3. Single-Variable Modern Filtering

Let #; be the expected state at the step k. Then the key
function of the modern filtering can be shown as

Ty = 0 + Kppi(4p1—C 03;) (8)

where K., is the weighting function. The filtering process is
drawn in Fig.1. The system model (1), the signal model (4), and
the statistics of the processes {w,} and {v;} are assumed to be
known. Then, the filtering algorithm (8) gives the expectation for
the state at the step k+1 according to the following informations:

i) One step transitioned state from the last expectation. This is
¢ii‘k.

1) Weighted difference of the measured k-+1 step system output
data y;, and the expected k-1 step output data Coz,.

The, weighting function K, plays an important role in the
filtering, it is determined by the following equation.

Kiy1 = m C/(Clyyy + 0) (9)

where to provide convenience in writting we have further assumed
that the system (1) is a first order system and therefore the state
is also a scalar. In (9), we may find that if the measurement noise
is high, i.e. the covariance o} is large, then the weighting function
is reduced. Thus, the difference term in (8) is less appreciated.
Also, the weighting function is affected by the k+1 step error
covariance my ., that is described as the follows.

A2 2,2
My = ¢ + Q7oy (10)
We may see that the error covariance my,; is in turn determined
by

. . . . . . 2 .
i) The input noise. If the input noise covariance o2 is large, the
error covariance my | is large.

ii) The quadratic mean error of the expectation at the step k, 2,
as
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z = (1 — K, C)my (11)

that can be calculated from the last step weighting function Kj
and the last error covariance .

The equations (8)-(11) consist of the single-variable modern
filtering with a first order dynamic system under no effect of input.

4. Justification of Parameters

Using the system model (1) and the signal model (4), the
parameters ¢ and C can be determined. Therefore, we only need
to justify @, o2, and a2 Let the process {z;} be stationary, and
let the processes {z; } and {w;} be independent. Then we have

E{z?} = E{zfp ) = E{w/} =0} (12)
Taking the covariance from (4a), it is easy to have
¢r+ Q=1 (13)

. . . . 9
Thus, @ can be determined. The input noise covariance oy, and

the measurement noise covariance o should be determined from
the test, that will be shown later.

1II. AGS Slow Extracted Beam Model

In this section, we discuss the AGS Slow Extracted Beam
model that is used for the modern filtering application. The study
is aimed at the beam behavior under the spill servo. Therefore,
other factors may be overlooked and the filtering is assumed to be
useful as the beam extraction observation and regulation.

The slow spill servo system at the AGS is dcsigped for tl.le
purpose of maintaining a constant beam extraction during the sp(}ll
period. The feedback signal is taken from the extracted beam. It is
then compared with the desired reference signal. The difference is
to drive the main magnet power supply to achieve an expected
magnet current slope, that moves the circulating beam radially

outward for the extraction. The model is plotted in Fig.2. In the
following, we discuss each element in the system. The results
presented are {rom the measurement test 3]. The transfer func-
tion T, represents the main magnet power supply voltage regula-
tion loop. Under the operation condition, the gain of the multi-
phase rectifier remains constant, therefore the loop gain remains
constant. Since the loop corner frequency ranges from 100 Iz to
200 Hz, that is higher than the frequency range of the possible
regulation signal, we denote 7’| as a constant gain clement whose
gain is about 76, at the test. T is the main magnet power supply
filter with the corner frequency 300 Hz, it is therefore represented
by a unity gain. The main maguet transfer function can be written
as

PO . (14)
: s + 04

where the input of Ty is the power supply voltage and the output
is the magnet current. T is the spill model that includes a beam
detector. The model contains the resonant extraction gain 0.00015,
and a 1 ms delay factor. Since the spill is controlled by the main
magnet current slope, it also contains an integration factor. Thus,
we have

T4 = 0.00015s¢~0-001¢ (15)

Ty is also a low pass filter and it is denoted as 100. The spill
servo regulator is

_ 0.0325 + 9.68

T
K s + 9.68

(16)
T is the loop gain control unit that has a gain 2.2 at the time of
data acquisition. Ty is again a filter that is denoted as 0.68.

The system suffers disturbances from the multiphase rectifier,
the power line, the spill process, etc. To apply the filtering, we set
a simulated system input noise in the front of the main power sup-
ply filter, outside the magnet voltage regulation loop T, The
measurement noise is shown at the output of the spill model
Finally, we note that the spill reference is simply a constant slope,
that can be disregarded in this test.
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As far as the beam extraction process is concerned, the
interested frequency band ranges from 0.1 Hz to 30 Hz. Therefore
the delay factor of 1 ms may be disregarded in the filtering, and
the magnet denominator s+0.4 and the spill integration factor s
may be canceled with each other. After some manipulations, the
system transfer function turns out to be

__0.0231s 4 0.2236 (7
1.084s + 35.09

IV. Modern Filtering Application

To apply the modern filtering to the AGS SEB we first sam-
pled the spill signal (after a low pass filter with the corner fre-
quency at 5 KHz, denoted as T;). The sampling time 7 is 1 ms,
and the resolution is 16 bit. Therefore, a data file that contains
1000 data is a 1 second scan on the heam spill.

The next step is to find the system model (1), the signal
model (4), and to estimate the noises covariances. A state space
form realization of 7' in (17) can be found as follows.

A =-3237, B=1 C=-048, D =0021  (18)

Since in this example the direct transmission part of the transfer
function, D, is not important, it can be disregarded. The transi-
tion function is caleulated as ¢=e¢ 3337000 —0 968 From (13), we
get @=0.25. From the data observation, we find that the mean of
the total scan is 0.0022, that is very close to zero. The covariance
is found to be 0.1034. Note that we are interested in the beam
spill, therefore we let the measurement noise covariance o2 be 0.1
and the input noise covariance 62 be 0.01. Thus, all parameters
required in the equations (8)-(11) have been specified and the filter-
ing algorithm is ready to apply.

The results are shown in Figs.3-5 for three runs. The beam
signals are shown on the top. Below, the results of the application
of the modern filtering (8)-(11) to the data. On the bottom, the
results of the conventional filtering with the corner frequency 4 Hz.
Note that for the purpose of low pass, the two filtering approaches
result in a similar extent. The accompanied distortion and the
defay of the filtered signals however are different. The modern
filtering algorithm gives rise better results. Due to the fast conver-
gence of the modern filtering, it can be noticed that the waveforms
resulted by using the modern filtering in Figs.3-5 overcome the
intrinsic delay of the conventional filtering. In Fig.3, for instance,
between the zero time to 200 ms, the two filtered waveforms
reached the bottoms that differ more than 50 ms on the time scale,
see the blown up picture in Fig.6. The importance of this lies in
that not only it provides better observation but it also provides
opportunity to a better spill servo control.

It is pointed out in (2] that the major problems in the appli-
cation of the modern filtering is the system modeling and the com-
putation. In the presented example, we have shown that the
model reduction of the sophisticated spill servo system, that is in
fact a high order system with various nonlinear, nonuniformly
sampled discrete, and time delay (dead time) elements, to a first
order lincar system satisfies our purpose. For this particular appli-
cation, since for each sampling there is 1 ms for the signal process
and the algorithm is simple, the computation should be imple-
mentable for real time calculation, and therefore it can be used for
the real time control.

V. Other Applications

In this section, we briefly discuss other applications for the
modern {iltering.

i) Control of the system with time delay. Tt is known that, for
instance, the AGS spill process has time delays from 1 ms to 3 ms.
This single factor introduces additional 36 to 108 degrees phase
shift for a 100Iz signal in the correction. By modifying the algo-
rithm (8)-(11), we may use one to three step forward prediction
instead of the present time estimation. This can be easily done by,
for example for 1 ms delay, using

— 9 .
Tevl = 670, (19)
as the k+1 step expectation, and using {F, } for the control.

ii) Signal Smoothing. This is for a close look and a detailed
analysis at a sampled waveform. There are some slight
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modifications on the presented algorithm that estimates the sys-
tem state by using both the signal history and future information.

iil) One advantage of the modern filtering is that for a very lim-
ited number of information data, it can figure out probably the
best estimation value by a simple algorithm. This is particularly
useful in the real time control by sampled data. We show an exam-
ple. In the proposed multiphase rectifier subharmonic ripple reduc-
tion scheme [4] the subharmonic ripple information is attained by
FFT. These information is used to decide the amplitude and the
phase for each component of the correction signal. The data are
corrupted by noise, and there is not much time that we can sample
many times for the averaging to filter out the noise. A simple algo-
rithm formed by (8)-(11) can then be applied. The result will be
reported in [4].
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