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ABSTR.ACT 
The symmetrirs of the chromatic correction sections in the SLC 
Final Focus System allow a high-resolution det,ermination of the 
pulse-to-pulse rnergy fluctuations by exploiting the information 
from beam position monitors (BPMs) in regions of large disper- 
sion. By correlating this signal with other BPMs, one can infer 
the dispersion function as well as spatial components of transfer 
matrices anywhere in the arcs and the Final Focus System with- 
out interrupting normal machine operation. We present results 
from data recorded during either periods of stable operation or 
periods when the linac energy was intentionally varied. 

INTRODUCTION 
The I*‘inal Foclfi System (FFS)l” in the Stanford Linear 

Collider (S1.C.l) is a complex optical system for strong demagn- 
fixation of beams at the interaction point. This requires not only 
a careful minimization of higher-order aberrations using a ded- 

icated chromatic correction section (CCS),3 sketched in Fig. 1, 
but, also a precise matching of the dispersion function at t,he en- 
trance of the FFS. The input dispersion is measured by varying 
the energy in the linac and recording the correlated beam mo- 
tion at. st,ripline beam position monitors (BPMs) in the FFS. 

.4n online matching package4 fits the results and predicts the 
strengths of four corrector quadrupoles in the FFS. This is an 
efficient tool for dispersion correction but is not suited for dis- 
persion monitoring because it int,errupty normal operation. In 
this papcr we describe a complementary scheme which permits 
an online nondisrupt,ive mcasurcment of dispersion functions by 
exploiting nat,ural fluctuations of the beam energy. This allows, 
for t tic) first, timr, monitoring of the stability of the dispersion 
snatch. The scheme is based on t.he information of CCS BPMs at 
positions wlirtre both dispersion and /J functions are large; i.e., 
I)l’Als wit,tl high smsit,ivit,y to rnrrgy and orbit. fluctua.tions. 
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2. GEOMETRIC AND CHROMATIC COMPONENTS 
\$r usp TR.4NSPORT5 notation to represent propagation 

of a beam from point (A) to point (B), 

*YCB) = RIIS(“) + RlaX”(A) + RI66 , 

where *Y is the transverse beam position, S’ is the beam an- 
gle with respect to the design trajectory, and 6 (E Ap/p) is the 
fractional beam momentum deviation, which we identify with 
the fractional energy deviation since SLC beams are ultrarela- 
tivistic. R is the transfer matrix from point (A) to point (L?), 
with .YX” coupling neglected. 
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The CCS is designed to correct lowest-order chro- 
matic aberrations using ?-dipole. %quadrupole, and S-sextu- 
pole magnets as shown in Fig. 1. These are arranged as two 
identical -1 telescopes such that local geometric aberrations due 
to sextupolcs are cancclled. Given this symmetry, the two-by- 
two beam transfer matrix from BP11 (A) in the first telescope 
to BPM (I?) in the second (see Fig. 1) is the negative identity 
matrix. This holds for both transverse planes. From (1) and 
R(A:B) = -I , a simple relation for the beam energy deviation is 
found: 

6= 
*yC") + dy(“) 

R16 
(2) 

The Rl6 element from BPhl (A) to BPM (B) is large and well 
known (460 mm), since it is almost completely determined by 
the two CCS dipoles B2 in Fig. 1. 

The position at BPM (A) or (5) can be decomposed into 
a pure betatron component (independent of 6), Xp, and a pure 
dispersive component, 

‘dA) = x,9 + 7p6 ) MB) = ->yg + 7p)6 , (3) 

where WC again use R cAfB) = -1. Now we define AX as thr 
different. between the BPLI readings: 

A<y E ; p - .y(W) = .Yp+A?]6 , (,I) 

where AT f (1/2)(r1(~‘) - r/(‘)) represents the component of the, 
dispersion at BPM (:I) due to an upstream mismatch. In order 
to separate X0 from 6 in Eq. (4), we assume An is not time de- 
pendent over one set of measurements and 
correlation of 6 with As. 

calculate it from thr 

.Y, = AS - wh (5) 

7% measurement of trajectory angles at BPMs (A) and (B) 
require the information of another pair of BPSls in the CCS: 
indicated by the labels (C) and (D) in Fig. 1. They are srpa- 
rated from BP& (A) and (B) by simple drifts of known length 
As = 2.4 m. 

>y’W - 
~‘(“1 - -y(A) 

- 
As 

and X 4B) - 
‘y(u) - y(B) 

- 
AS (6) 

‘I’his allows a derivation of As’, ,Y; and All’ in analogy to 

Eqs. (4) and (5). 
A careful study of uncertainties in the CCS optics showed 

that systematic errors in these measurements are small and that 
the resolutions are sufficient for online monitoring. 

3. BPM DATA ACQUISITION 
An offline FORTRAN data acquisition program has been 

written to gather data from BPRls throughout t,he SLC and 
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write it to disk. The X position, Y position, and beam inten- 
sity is sampled for 850 BPMs [including the CCS BPMs (A), 
(B), (C) and (D)] once every few seconds. The sample rate is 
one sample every KZ 5 seconds. Presently, data is collected inter- 
actively over short periods, with 100 samples saved to disk for 
subsequent analysis, In the future, monitoring will run contin- 
uously, with data stored in a circular buffer. We will also store 
dynamically updating moments of BPM data for fast online fit- 
ting of lattice parameters, as described in the next chapter. 

4. A MONITORING APPLICATION 
The correlation of measured betatron fluctuations X, and 

energy fluctuations S with position measurements of BPMs in 
any region of interest can be exploited for a fast measurement 
of the dispersion function and elements of the transfer matrix. 
Let X(‘) be the beam position measured at any BPM pabelled 
“(;)“I. Using Eq. (1) and the definition of X9 and XL, we can 
interpret this quantity in two ways: 

x(i) = &fi)x(A) + &:i)Xf(A) + #:i)6 c7aJ 

or x(i) = Rif:‘)Xp + #:‘)X 
B + ?p6 . (74 

Both equations allow measurement of the transfer-matrix ele- 

ments Ran”’ and RI:‘). The energy correlations, however, de- 

termine the lattice dispersion R,, tA’i) between BPMs (A) and (i) 

in (7a), but the dispersion junction ~(~1 [i.e., the total disper- 
sion between the source of energy jitter and BPM (i)] in (7b). 
Therefore, (7b) is most useful for judgement of the total disper- 
sion mismatch at the entrance of the FFS, while (7~) allows in- 
vestigation of local lattice dispersion near the CCS and sources 
of mismatches within the FFS. 

In Fig. 2, we present a simulation of this procedure. We 
generated 100 trajectories with energy fluctuations of 0.4% and 
relatively large betatron motions of four times the betatron size 
of the beam. All BPM readings were smeared according to a 
resolution of 20 pm. The results from properly error weighted 
fits6 to (7~) and (76) are in good agreement with the input 
lattice for all BPMs inside the FFS. 
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Fig. 2: Reconstructed FFS lattice parameters from simulated 
BPM data for 100 orbits with varying energies and trajectories. 

Reducing the amplitude of the betatron fluctuation, how- 
ever, quickly leads to resolution limitations for many of the FFS 
BPMs. It is therefore useful to reduce the number of fitted 

parameters in (7a) and (7b). One possibility is to average the 
measurements over the angular information at BPM (A): 

(X('))IX~A~,6 = 
Ri;4:s) 1 x(A) 

+ R(,$‘) + as 12 
&-dA) R(A:‘) 6 1 @aI I (X (4 )IXb,6 = f&f:‘) + zR\$‘) I X, + ~+‘)6 (8b) 

P 

It is thus possible to measure ~(‘1 and linear combinations 

of Rif’) and R(,t”), or R$$‘) and RI;“) with (8~) and (Sb), 
respectively. The correlation parameters in these linear combi- 
nations can in principle be extracted from the data if they are 
stable during a single monitoring period. 

Figure 3 shows the correlation terms in (8~) reconstructed 
from data taken during normal operation. The measurements 
are in good agreement with a linear combination of Rif”) and 
RI;:‘) , or Ran”) and R\i”), which were obtained from fits of the 
nominal lattice parameters to the data and are superimposed in 
the figure. 
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Fig. 3: Linear combinations of Fl3 lattice parameters from 

two-paramter fits to data taken during normal operation. Solid 
lines are best fits to data using design parameters. 

Finally, averaging (8~) and (8b) over all betatron fluctua- 
tions yields a direct relation for the dispersion function: 

(X(‘))/& = rp& (9) 

This simple one-para.metrr relation allows very stable fit,s. Fig. 4 
shows the measurement, of the dispersion function in the FFS 
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taken when the beam energy was intentionally varied by f0.3%. 
This precision measurement reveals a dispersion mismatch at 
the entrance of the FFS. This is confirmed in Fig. 5, which 
shows the correlation of AX with 6, which according to Eq. (4) 
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Fig. 4: Dispersion function in the FFS obtained from data with 
large energy fluctuations intentionally introduced. 
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Fig. 5: Fit of the dispersion mismatch at BPM (A) for the 
data used in Fig. 4. 

is the dispersion mismatch at, BPhl (A). The dispersion function 
in the arc was derived for the same data set and is displayed in 
Fig. 6. An example of a measurement of the FFS dispersion 
function taken during normal operation is presented in Fig. 7. 
The resolution of the measurement is satisfactory, although the 
dispersion function is derived solely from natural fluctuations in 
the beam energy. 

5. PRESENT HARDWARE LIMITATIONS 
At present, the range of applications for this scheme is lim- 

iicd, since most of the BPMs in the arcs and .the FFS are read 
out in a multiplexed mode. Only a fraction of the available 
BPMs are read on the same beam pulses as BPMs (A) and (B), 
which define the energy fluctuation via (2). This influences the 
dispersion measurements in a systematic way if the natural en- 
ergy fluctuations follow a fixed pattern in time. Similar limita- 
tions exist for the measurements of betatron orbit fluctuations. 
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Fig. 6: As Fig. 4, for the north arc. 
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Fig. 7: As Fig. 4, for data taken during normal operation. 

We plan to modify software and hardware such that infor- 
mation for BPMs (A), (B), (C) and (D) is available on all pulses 
of a multiplexer scan. This will further increase applicability of 
the new monitoring scheme. 
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