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ABSTRACT

The final electron energy spectrum under multi-photon beam-
strahlung process is derived analytically in the classical and the
intermediate regimes. The maximum disruption angle from the
low energy tail of the spectrum is also estimated. The results are
then applied to the TLC and the CLIC parameters.

INTRODUCTION

The synchrotron radiation, called beamstrahlung, due to the
beam-beam force is one of the major limitations of the perfor-
mance for the next generation linear colliders. In addition to the
average energy loss, the electron energy spectrum also provides
crucial informations. The knowledge on the tip of the spectrum
reveals the energy resclution for high energy experiments. The
spectrum {tail, on the other hand, gives the probability of low
energy particles that will be severely deflected by the same beam-
beam field, and would impose constraints on the aperture of the
final focusing quadrupole. The concern is relavent because for
the next generation linear colliders at the TeV range, the critical
energy of radiation is comparable to the beam energy. In such
case some particles can in principle lose a large fraction of their
initial energies and be deflected by angles much larger than the
typical value.

The aim of the present paper is to derive a simple formula
for the energy spectrum after successive multi-photon radiations.
Similar effort has been done recently by Blankenbecler and Drell”’
Our goal in this paper, however, is to look for compact expressions
handy for quick estimations, with attention to the tip and tail of
the spectrum. In our derivations we bare in mind that a relatively
accurate formula near the initial energy tip is needed for the en-
ergy resolution purpose, whereas for background considerations a
crude estimation near the low energy tail is enough.

THE RATE EQUATION

Let o(F, t) be the energy spectral function of electrons at time
¢t normalized as [(&,t)dE = 1. We assume that the emission
of a photon takes place in an infinitesimally short time interval.
Then the evolution of the spectral function can be described by
the rate equation
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where the first term corresponds to the sink, and the second term
the source, for the evolution of w(E, (). Here, v(E) is the average
number of photons radiated per unit time and F is the spectral
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function of radiation; i.e., F(E, E')dE’ is the transition probabil-
ity of an electron from energy E' to the encrgy interval (E, E+dE)
per unit time. Obviously, F(E,E') = 0if E > E'. Notice,
however, that F' does not include the probability for electrons to
remain at the same energy without photon emission.

An important parameter characterizing the spectral function
is the critical energy w, of radiation. Normalizing it by the energy
E before emission, we define

we BAAN E
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where 7 is the Lorentz {actor for energy E, A, the Compton wave
length, and p the radius of curvature. Since p o =, the introduced
parameter I/ is independent of energy.
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The quantum-theoretical spectral function F' was derived by
Sokolov and Ternov:”
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where y = K[(1/E') — (1/E)], K,’s are the modified Bessel func-

tions and v is the number of photons per unit time calculated
by the classical formula,
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o being the fine structure constant. Note that for a given field
strength v, is independent of the particle energy.

(4)
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By definition, v(E) is given by integrating F as
I
v(E) = /F( S EME = valin(€) . {5)
0
The function Up(£) is normalized such that U4(0) = 1, and can
be represented by the following approximate exppression:
1 —0.598¢ + 1.061¢£5/3
B 14 0.922¢2 ’

where the relative error is less than 0.7% for any €.

Uo(€)

(6)

CLASSICAL REGIME

Let us solve Eq.(1) for constant fields (& =const) in the classi-
cal regime, i.e., £o < 1. Instead of using the exact Sokolov-Ternoy
formulafor f(£,y) as in Eq.(3), we invoke an approximate spectral
function

L 23~y (7
gly) = —y e s
9(y) MY , (7)
which gives a reasonable approximation for any £ and y. The
advantages of using g(y) is that it is a function of y only and it
provides a simple Laplace transform.
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The rate equation can now be solved exactly with v(E) =
Ve in the calssical limit. Changing variables to n = K/F and
w(n,1) = EY(E,t), the rate equation can be rewritten as

7
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Applying the following Laplace transformations,
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Eq.(8) takes the form

PE T
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which can be solved immediately to obtain
. P ’ -1/3
#p, 1) = 3,0 exp[Na( =1+ (14 )7 (1)
with Ny = vyt being the average number of photons radiated up
to the time ¢.
Let us assume the initial condition ¥*(£,0) = §(£—Ey). Then
from the inverse Laplace transformation we get
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v(E, 1) = e.\'p(]\'dp_l/3 +yp)dp . (A >0)
(12)

with y = 7 — no and o = K/ Ey. Using p instead of yp, we get
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where A > 0 and 0 < x < 0.

The first term of Eq.(13) represents the electron population
that suffers no radiation. In addition, each term of the Taylor
expansion in [2q.(14) has a physical meaning: The n'® term cor-
responds to n times of iterations on the radiation spectral func-
tion F, thus represents the process of n-photon emissions. For a
given z, the largest contribution comes from the term n ~ 3z =
VINLy/S. Therefore for a finite N the tail of the spectrum is
not deminated by single photon emissions, but by multi-photon
ermissions.

Applying the saddle point method to Eq.(14), we can find the

asymptotic form for A(z) at z > 1. Based upon this asymptotic
form an approximate expression is available:
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]3/4exx)[4(w/3)3/“], (15)

which is accurate within 2% for any 0 < z < cc.

INTERMEDIATE REGIME

For finite values of £, the rate equation cannot be solved ex-
actly since ¥{E) is not constant any more. However, in the inter-
mediate regime where £ < O(10), »(F) should not deviate from
v too significantly. This suggests to a solution based upon minor
perturbations to the classical result of Eq.(13).

The first, and natural, attempt is to replace N in the expo-
nent by the photon number calculated by the quantum theory:

Ny = v(Eo)t = Up(éo) Nt - (16)

This replacement is good, however, only near the high energy tip
E ~ FEy. It turns out that a better approximation exists if, in
addition, one replaces the second N in the argument of 2(zx) by
the following emperical formula:

1 . Eoy

N(E) = N+
(E) T+éy 7 1+ oy

Ny (17)

which reduces to Ny at E = Ej (or, y = 0). Thus we have
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An alternative approach is the following: One may retain the
second N, while replacing the first one with an effective photon
nurmber. Since the particle with final energy £ must have been
cascading down through all energies between Ey and E statisti-
cally, an effective photon number can be given by

o
I+ oy

R(E) = (n(Ey) + (Bt = £ [Uo(6o) + Lo

)| Ma- (19)

In this approach the solution becomes

B 1) = e NE (B - Bo) + Wy N (20)

e
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It turns out that the second solution agrees better with the
simulation result based on the approximate spectral function,
whereas the first fits better with the exact spectral function of
Sokolov-Ternov. Without obvious advantage of either one, we
shall simply adopt Eq.(18) for the intermediate regime.

MAXIMUM DISRUPTION ANGLE

Particles that suffer severe energy losses would be disrupted
with large angles by the strong beam-beam field. A simulation
was done by monitoring low energy test particles throughout the
collision process. The maximum deflection angle for a given en-
ergy £Fy, where ¢ < 1, is found to be roughly

o Dfe
onm;'” T T e
02 /1+(0.75D /)13

R (21)

where D = D, 4 is the disruption parameter

2reNo,
Dgy = -

7‘71,11(0'1 + Uy)

)

for the = and y dimensions, respectively, and o = o4 4.
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Table 1. Parameters for TLC and CLIC

TLC CLIC
Co[TeV] 0.5 1.0
N 8 x 10 5 x 10°
o, 0y[nm] 190, 1 60, 12
oz pm] 26 200
€z, €y [107 ¥ mrad] 2.58, 0.023 1.53, 0.51

D,, D, 0.033, 6.27 0.667, 3.333
& 3.43 1.48
*§ 0.15 0.25
<N, 1.33 3.0
Ermin 0.013 0.03
0; mmazs Oy max [milivad] 10, 0.4 1.0, 0.4

= Quantities computed by simulations.

The minimum value of ¢ can in principle be as small as 1/-.
But the real problem is about how small a £ should one care. Since
the number of photons N, per beam particle for lincar colliders
in the near future is of order unity, the spectral function (¢ Ep)
given in Eq.(18) is always dominated by the factor e™¥ in the spec-
trum tail, where ¥ > 1 (in logarithmic sense). Therefore if the
acceptable background counts is n out of N electrons, the mini-
mum ¢ of concern is approximately determined by y = log{N/n),

or
GT

1
1+ & log(N/n)

With this value of ¢, one can directly estimate the maximum

(23)

Emin =

deflection angle using Eq.(21). Since the dependence on n is only

logarithmic, one can set n = 1 for practical purposes.

APPLICATION TO TEV COLLIDERS

We now apply the formula dreived above to the specific TeV
collider design. So far we have considered constant fields only,
but in reality the beam-beam field varies in time like a Gaussian
function. Thus A (and, therefore, &) is not a constant in time.
The parameter £y has to be replaced with a typical value of £
during the collision. We suggest to use

rg'yN 2

Qo Oz + 0y

é‘l = 3 (21)
where r, is the classical electron radius, o, oy and o, are the
horizontal, vertical, and longitudinal r.m.s. beam sizes at the
collision point, respectively. This expression is larger than the
average £ by a factor about 3/2, but it provides better agreements
with simulations. The reason is that the low energy tail of the
spectrum is dominated by the radiation with larger local £, and
is therefore weighted more; whereas the high energy tip of the
spectrum is relatively insensitive to the choice of €.

In addition, the Ny at the end of the entire collision process
has been derived to be”

2ar. N

Ny = 1.06
cl oy + o

Computer simulations for Gaussian beams have been per-
formed using the program code ABEL" on the linear collider
design parameters for TLC,” and that for CLIC.* The adopted
parameters are summarized in Table.1. The disruption effect is
included in the simulation.

The analytic formula Eq.(18) (dots) is compared with the
simulations (histogram) in Fig. 1. The agreement is excellent for
the TLC parameter, while there is a slight discrepancy at the low-
energy tail for the CLIC parameter. The reason is that the field is
enhanced somewhat in the CLIC case due to the more significant
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tail is sensitive to various parameters, especially £, the excellent
agreement seen in the figure is somewhat fortuitous.
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Fig. 1. Electron energy spectrum for TLC and CLIC.
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