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ABSTRACT 

The final electron energy spectruln under multi-photon bean- 
strahlung process is derived analytically in the classical and the 
intermediate regimes. The maximum disruption angle from the 
low energy tail of the spectrum is also estimated. The results are 
the11 applied to the TLC and the CLIC parameters. 

INTRODUCTION 

The synchrotron radiation, called beamstrahlung, due to the 
beam beam force is one of the major limitations of the perfor- 
mance for the next generation linear colliders. In addition to the 
average energy loss, the electron energy spectrum also provides 
crucial informations. The knowledge on the tip of the spectrum 
rcvrals the energy resolution for high energy experiments. The 
spectrum fail, on the other hand, gives the probability of low 
energy particles that will be sevrrely dcflccted by the same beans- 
beam field, and \vould impose constraints on the aperture of the 
final focusing qu,ldrtipole. The concel’n is r&vent because fol 
the next generation linear colliders at the TeV range, the critical 
energy of radiation is comparable to the beam energy. In such 
case some particles can in principle lose a large fraction of their 
initial energies and be deflected by angles much larger than the 
typical value. 

The aim of the present paper is to derivr a simple formula 
for the energy spectrum after successive multi-photon radiations. 
Similar effort has been done recently by Blankenbecler and Drell!’ 
Our goal in this paper, however, is to look for compact esprcssions 
handy for quick estilnations, with attention to the tip aud t,ail of 
the spectrum. In our derivations we bare in mind that a relatively 
accurate formula near the initial energy tip is needed for the en- 
ergy resolution purpose, whereas for background considerations a 
crude estimation near the low energy tail is enough. 

THE RATE EQUATION 

Let $(E, t) bc the energy spectral function of electrons at, time 
t normalized as J +(E, l)dE = 1. 11: c assume thai the <mission 
of a photon takes place in an infinites.imally short time interval. 
Tl~cn the evolution of the, spectral function can be descrihcd by 
the rate e<llLntion 

ilt = -u(E)$(E, t) + 
/ 

I+‘( E, I?)$( E’, t)dE’ , (Ii 
E 

where the, first term corresponds to t,he sink, and the second term 
the source, for thr evolution of ti( E, t). Here, v(E) is the average 
number of photons radiated per unit, time and F is the sprctra! 

* \Vork supported by the Departnlcnl of Energy, contract, numbcAr 
nI;)-.~~l~:~-~~;sI~oo~l’,. 

function of radiation; i.e., F(E, E’)rlE’ ’ 1s the transition probabil- 
ity of an electron from energy E’ to the encrgy interval (E, E+dE) 
per unit time. Obviously, F(E, E’) = 0 if E 2 E’. Notice, 
however, that F dots not include the probability for electrons to 
remain at the same energy without photon emission. 

An important parameter characterizing the spectral function 
is the critical energy w, of radiation. Kormalizing it by thr encrgy 
E before emission, we define 

{(E) = z$ = ;y = g , (‘1 

where 7 is the Lorentz factor for energy E, X, thr Vompton wave 
length, and p the radins of curvature. Since p (x 7. the introduc-(Id 
parameter A’ is independent of energy. 

The quantum-theoret.ical spectral function F was derived 1~4 
Sokolov and Ternov: 21 

W’, E) = $+t, Y) , 

f(<>zl) = A& [jii.,&.-)d:i + ;$$A’~,~(~,)]. 
(3,l 

E Y 
where y = K[(l/E’) -(l/E)], I i,‘s are the modified Bessel func- 
tions and v,) is the number of photons per unit time calculated 
by the classical formula, 

5 “7 
vcl=“E=o =zy ’ 

u being the fine structure constant. Not,e that for a given fic,lJ 
strength v,i is independent, of the particle energy. 

By definition, v(E) is given by intcgratillg F as 

6 

u(E) = 
s 

F(E’, EjdE’ G vC&,([) (5) 
0 

The function r/o([) is normalized such that [i”(O) = 1, and can 
be represented by the following api)roximatc exppression: 

Uo(E) = 
1 - 0.5%( + 1 .OGIp 

1 + 0.922p ’ 
(6) 

where the relative error is less than O.i’lo for any [, 

CLASSICAL REGIME 

Let US solve Eq.( 1) for wrIstant, fields (Zi =const) in thcx c.l~lhLii- 
Cal regime, i.e., &J < 1. Instead of using the exact Sokolov-‘ltrnov 
formula for f([, y) as in Eq.(3). we invoke an approximate spectral 
function 

1 
9(2/l = ____ 

-?/3(,-y 
lY(l/3)!’ 1 

(7) 

which gives a reasonable approximation for any < and 1,. ‘I‘hr 
advantagrs of using g(v) is that it is a funct.ion of :, only ant1 it 
provides a sinipla Laplncc transform. 
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The rate equatiou can now be solved exactly with u(E) = 

V,I in the calssicnl limit. Changing variables to 7 c Ii/E and 
P(I/, t) f E$(E, t). tllc: rate equation can be rewritten as 

9 
39 -= 
at -ucw + ul.i I g(17 - 11’)y(v’: tjdv’ (8) 

0 

il])plying the following Laplace transformations, 

cc 

$(p, t) = / ‘-~~~(r/, tjclg ; 
J 
0 
rx (31 

i(P) = 
I 

c-qPg(p)dTj = l 

0 
(1 $p)'/J ; 

Q.(8) takes the form 

c&3 
i)t=uci -l+ [ (1 +;)'I" + ' 1 

which can be solved ir~lmediatcly to oljtain 

?(p, tj = $(p, oj exp[N,,(-1 + (1 $ &J-l/3,] ) (11) 

with ,V,, = vc/t b&lg t,he average n11mber of photons radiated up 
to the time t. 

I,rt us assume the initial condition 1/,( E, 0) = 6(E- Eo). Then 

frown the invc)rst, Laplace transformation we get 

e-Jl’ci-Y 1 
A+W 

V(E.Ll= Ty$ 
I 

er;P(nrc,p-1’3 + ypjdp , (A > 0) 

X-i02 

(1”) 

with z/ = 1) - r/o ad T/O = K/E~. Using p instead of yp, we get 

J,( (I, 1) = e-JV,r 
i 
qfi - Eo) + &+Y1~3w] > (13) 

with 

X+%X 

i;(x) = +; 
I 

esp(sp-‘i3 + p)dp = 5 At- 
n=l 7W7L/3) 

> (14) 
A-z’x 

where x > 0 ad 0 < s 5 00. 

The first tcrln of F:q.(13) p ie resents the electron population 

t,lrat surers no radiation. In addition, each term of the Taylor 
erl)ansion ill I:+( 1.1) has a physical meaning: The nlh tern1 cor- 
rc~ponds to )i times of itkrations on the radiation spectral func- 
l,ion Is’, thus represents the process of n-photon emissions. For a 
given z, the largcsst contril)ution COlh(‘s from th? term n N &= 

my, l/G ‘I’herefore for a finite Iii,, the tail of the spectrum is 

not dominated by single photon emissions, hut by multi-photon 
?*lllSSlOIlS. 

Applying the saddle point method to l&1.(14), we can find the 
asymptotic form for h(;cj at .z >> 1. Based upon this asymptotic 
form an aI)proxirrlatc expression is available: 

h(J) - Q, T ~-5,G]3’4es,,,~~i,3j”‘~] , (15) 

which is accurate ivithin 2% for any 0 5 r < m. 

INTERMEDL4TE REGIME 

For finite VitlUeS of <, the rate equation cannot be solvctl ex- 
actly since v(E) is not constant any more. Ilowcver, in the intcr- 
mediate regime where < 6 0(10), Y(E) should not deviate from 
vcl too significantly. This suggests to a solution based upon minor 
perturbations to the classical result of Eq.( 13). 

The first, and natural, attempt is to replace !Vc, in the expo- 
nent by the photon number calculated by the quantum tlleory: 

NY = u(Eo)t = u~(~0)N,~ (W 

This replacement is good, however, only near the high energy tip 
E - &. It turns out that a better approximation exists if, in 
addition, one replaces the second ?vCl in the argument of h(s) by 
the following ernperical formula: 

N(E) = 
1 

-Lvci + ~ 
1 +foY 

fOY izr 

l+foY y ’ (17) 

which reduces to lVCl at E = Eo (or, 2/ = Oj. Thus we have 

$(E, t) = e--d’, 
i 
6(jy - Eo) + $$I ‘%qy)j] (18) 

An alternative approacli is the following: One may retain the 
second Arc, while replacing the first one with an effective photon 
number. Since the particle wit,h final energy E nlust have been 
cascadi:ig down through all energies between Eo and E statisti- 
cally, an effective photon number can be given by 

Sr(Ej = J$u(E~) + u(Ej)t = k [l:0(f0) + uo(&)]fvcl. (13) 

In this approach the solution becomes 

7$(E:(, t) = c- eE’ 
i 
S(E - 8”) + &/L(y’~31vc,)]. (‘LO) 

It turns out that the second solution agrees better with the 
simulation result based on the approximat,e spectral function, 
whereas the first fits better with the exact spectral function of 
Soltolov-Ternov. Without obvious advantage of either one, we 
shall sim:,ly adopt Eq.(lS) for the intermediate regime. 

MAXIMUM DISRUPTION ANGLE 

Pa.rticles that suffer severe energy losses would be disrupted 
with large angles by the strong bcarn-lx2a1n !ield. A simulation 
was done by monitoring low energy test particles throughout the 
collision process. The mr:simum deliection angle for a given eri- 

ergy CEO, wl~ere e < 1. is fount1 to bc roughI> 

fLL<LX - +&&-.~ > (E<<l) (21) 

ivlirre n = I>,,, is 1111, disr7lption ~~lrzn2~ff7~ 

u,,, Is 
PI., ;VUZ 

Y~Z,Y(‘TZ + UY) ’ 
(22) 

for the z and y dinlcllsions, rc:sp(Sctivc,l)r, and g = gz,Y. 
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Tabk~ I. Paramclers for TLC and CLIC 

Ellllil 0.013 

Q1,lrlcll, Qy,7nar[milira4 10, 0.1 

- Quantities computed by simrllat.ions. 

0.03 

1.0, 0.1 

The minimum value of E can in principle be as small as l/y. 
But the real problem is about how small a E should one care. Since 
t,hcT nu~nber of photons jli7 per beam particle for linear colliders 
in lhc near fllturc is of order unity, the spectral function 1;I(F&) 

given in Eq.( 1s) is always dominated by the factor cey in the spcc- 
trum tail. whc7c ?j >> 1 ( in logarithmic sense). Therefore if the 
act-rpl ahl~~ Imt kgro~~nd c~or~nts is 7) out of ,V electrons, the min- 
n~uni E of ronwru is approxillintc~ly det~clrtlinc~tl by j, = log(N/7l), 
or 

1 
emtn = 1 + [I log(.V/nj 

(23) 

R’ith this va111e of E: one can directly est,iniate the maximum 
tlcllc~ction angle using Eq.(21). S’ iuce the dependence on 12 is onI> 
logarit hlllic. one can set 12 = 1 for practical purposes. 

APPLICATION TO TEV COLLIDERS 

\\‘e now apply the formula dreived above to the specific TeV 
collitlcr drsign. S o dr wr halve considered constaut fields ouly, f. 
but, in reality the beam-beam Geld varies in time like a Gaussian 
functioll. ‘I’IIIIS Ii (md, thrrcforc, (0) is not, a constant iI1 tiilic. 

‘1‘11~~ paranletcyr (0 leas to be replaced with a typical valet, of < 

during t,llc collision. \Vc suggest to use 

r2yN 2 
&rL- , 

NO, fl, + gy 

where rF is the classical electron radills, crl, cry and 0, arc t.llc 
horizont,al, vertical, and longitudinal r.~n..s. beam sizes at t,llc 

r:ollision point, rc3pcctivrly. This c>sprc’ssion is larger than the 

a\-c%ragr ( by a fa6:tor about Z/2, but it provides betl(lr ag~cenlctil1.s 

with simulations. The reason is that t.h? low energy tail of l.llc* 

sp~ti u1i1 is do~nir~atcd by the radiation with larger loc,al 1. niltl 
is t her(‘for<’ wc,igllt.cd morr: Jvllc7ea3 thr lligh energy til) of tIlc> 
sp~l.ru~i~ is rc,lati\,ely insensit i\rc 1.1) tlL(> c,hoicc of <. 

III atldition. tli(, :I’,, at thr c,ntl of the entilc: collision p1’oc‘<‘ss 
ha bwri deri\,cTil lo be” 

2nr, TV 
iv,1 = 1.06- 

u’r + cry 
(25) 

Computer simulations for Gaussian beams have been per- 
formed using the program code ABT;‘,T.” on t,hr linrar collidrr 

design parameters for ‘T’T,C:“’ and that for CI,IC.6’ ‘The adopted 
parameters are summarized in Tablc.1. The disruption effect is 
included in the simulation. 

The analytic formula Eq.(lS) ( 1 t ,) co 5 IS comparcd with the 
simulations (histogram) in Fig. 1. Thp agreement is excellent for 
the TLC parameter, while there is a slight discrepancy at the low- 
energy 1 ail for the CLIC I >dl tmrter. ‘i 1‘11c reason is lllat, thus field is 
enhanced son~ewl~at in the: CI,I(Z cast ducx t.o the nlore significant 
pinch effect in the horizontal plane. Since ill gcwc~al tlir spectrum 
tail is sensitive to various parameters. especially <, the excellent 
agrermcnt sc’rn in tlic figurr is somewhat fortuii ous. 

10-l 

lo-* 

10-3 

(b) 
CLIC 

. I I I I 
0 0.2 0.4 0.6 0.8 1 .o 

io 88 E/E, 51 iiA8 

Fig. 1. Elrctro7~ energy spccf,nm for TLC and CLICI. 
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